Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The photocatalytic activity of a series of novel KSrNbO materials was studied using the photooxidation of methylene blue as model reaction. The influence of the calcination time upon the crystalline structure and photoactivity was verified. Characterization was performed by XRD, SEM, FTIR, UV-Vis/DR, Helium picnometry, and N and CO adsorption-desorption isotherms. The diffraction line profile and the refinement of the structural parameters of KSrNbO were obtained from the XRD patterns by the Rietveld method. Data showed that samples were photoactive under UV irradiation, regardless the synthesis conditions. However, the calcination time had a clear influence upon the photocatalytic activity of the samples, being more efficient towards the degradation of the dye those obtained at a lower calcination time. Indeed, the sample calcined for 4h showed up to 4 times higher photocatalytic activity than commercial TiO. Additionally, a correlation between the photocatalytic activity and the displacement of the Nb ion from the central position in the [NbO] octahedron was found. It is suggested that this fact causes an important polarization of the niobate structure. The apical oxygen in these samples is very reactive and can lead to the formation of superoxoradical anions (O) showing that KSrNbO can be potentially used in photocatalytic reactions under UV irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2017.02.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!