Numerous reports suggest that aberrant activations of STAT3 and NF-κB promote survival and proliferation of multiple myeloma (MM) cells. In the present report, we demonstrate that a synthetic S-nitrosothiol compound, S-nitroso-N-acetylcysteine (SNAC), inhibits proliferation and survival of multiple MM cells via S-nitrosylation-dependent inhibition of STAT3 and NF-κB. In human MM cells (e.g. U266, H929, and IM-9 cells), SNAC treatment increased S-nitrosylation of STAT3 and NF-κB and inhibited their activities. Consequently, SNAC treatment resulted in MM cell cycle arrest at G1/S check point and inhibited their proliferation. SNAC also decreased the expression of cell survival factors and increased the activities of caspases, thus increased sensitivity of MM cells to melphalan, a chemotherapeutic agent for MM. In U266 xenografted mice, SNAC treatment decreased the activity of STAT3 and reduced the growth of human CD138 positive cells (U266 cells) in the bone marrow and also reduced their production of human IgE into the serum. Taken together, these data document the S-nitrosylation mediated inhibition of MM cell proliferation and cell survival via inhibition of STAT3 and NF-κB pathways and its efficacy in animal model of MM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826580 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2017.02.039 | DOI Listing |
Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. A critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and monoclonal antibodies are in clinical use that either target IL-6Rα or hIL-6 to inhibit signaling. Here, we perform high throughput structure-based computational screening using ensemble docking for small molecule antagonists for which the target conformations were taken from 600 ns long molecular dynamics simulations of the apo protein.
View Article and Find Full Text PDFImmune cells determine the role of the tumor microenvironment during tumor progression, either suppressing tumor formation or promoting tumorigenesis. We analyzed the profile of immune cells in the tumor microenvironment of control mouse skins and skin tumors at the single-cell level. We identified 15 CD45 immune cell clusters, which broadly represent the most functionally characterized immune cell types including macrophages, Langerhans cells (LC), conventional type 1 dendritic cells (cDC1), conventional type 2 dendritic cells (cDC2), migratory/mature dendritic cells (mDC), dendritic epidermal T cells (DETC), dermal γδ T cells (γδT), T cells, regulatory T cells (Tregs), natural killer cells (NK), type 2 innate lymphoid cells (ILC2), neutrophils (Neu), mast cells (Mast), and two proliferating populations (Prolif.
View Article and Find Full Text PDFCell Signal
January 2025
Department of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong 226300, China. Electronic address:
Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme that has been reported to be overexpressed in various cancers. However, the role of PRDX2 in gastric cancer progression and its underlying mechanism remains unclear. Herein, we revealed the function of PRDX2 in gastric cancer progression and explored its molecule mechanism.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Street of Art Museum, Dongcheng District, Beijing, 100010, China. Electronic address:
Ethnopharmacological Relevance: Yinxu Weitong Capsule (YXWTC) is a Chinese patent medicine used to treat chronic gastritis. However, its efficacy and mechanisms of action in treating precancerous lesions of gastric cancer (PLGC) remain unclear.
Aim Of The Study: To evaluate the effects of YXWTC on PLGC and explore the underlying mechanisms.
Fitoterapia
January 2025
Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China. Electronic address:
Four previously undescribed diterpenoids (2-5) were isolated from the bark of Torreya grandis, along with ten known analogues. The structures of the compounds were elucidated using NMR, HR-ESIMS, and ECD calculation. The cytotoxic effects of the isolated compounds on HCT-116, AsPC-1, and HepG2 cells were evaluated using the MTT assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!