Caveolin-3 (CAV3) is a muscle specific protein that plays an important role in maintaining muscle health and glucose homeostasis in vivo. A novel autosomal dominant form of LGMD-1C in humans is due to a P104L mutation within the coding sequence of the human CAV3 gene. The mechanism by which the LGMD-1C mutation leads to muscle weakness remains unknown. Our objective was to determine whether muscle weakness was related to the imbalance of glucose metabolism. We found that when the P104L mutation was transiently transfected into C2C12 cells, there was decreased glucose uptake and glycogen synthesis after insulin stimulation. Immunoblotting analysis showed that the P104L mutation resulted in decreased expression of CAV3, CAV1 and pAkt. Confocal immunomicroscopy indicated that the P104L mutation reduced CAV3 and GLUT4 in the cell membrane, which accumulated mainly near the nucleus. This work is the first report of an association between muscle weakness due to LGMD-1C and energy metabolism. The P104L mutation led to a decrease in C2C12 muscle glucose uptake and glycogen synthesis and may be involved in the pathogenesis of LGMD-1C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.02.072DOI Listing

Publication Analysis

Top Keywords

p104l mutation
24
muscle weakness
12
glucose metabolism
8
metabolism p104l
8
glucose uptake
8
uptake glycogen
8
glycogen synthesis
8
mutation
7
muscle
7
lgmd-1c
5

Similar Publications

Caveolin-3 loss linked with the P104L LGMD-1C mutation modulates skeletal muscle mTORC1 signalling and cholesterol homeostasis.

J Cachexia Sarcopenia Muscle

October 2023

Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.

Background: Caveolins are the principal structural components of plasma membrane caveolae. Dominant pathogenic mutations in the muscle-specific caveolin-3 (Cav3) gene isoform, such as the limb girdle muscular dystrophy type 1C (LGMD-1C) P104L mutation, result in dramatic loss of the Cav3 protein and pathophysiological muscle weakness/wasting. We hypothesize that such muscle degeneration may be linked to disturbances in signalling events that impact protein turnover.

View Article and Find Full Text PDF

Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function.

J Cachexia Sarcopenia Muscle

June 2020

Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK.

Background: Caveolin-3 (Cav3) is the principal structural component of caveolae in skeletal muscle. Dominant pathogenic mutations in the Cav3 gene, such as the Limb Girdle Muscular Dystrophy-1C (LGMD1C) P104L mutation, result in substantial loss of Cav3 and myopathic changes characterized by muscle weakness and wasting. We hypothesize such myopathy may also be associated with disturbances in mitochondrial biology.

View Article and Find Full Text PDF

Caveolin-3 (CAV3) is a muscle-specific protein present within the muscle cell membrane that affects signaling pathways, including the insulin signaling pathway. A previous assessment of patients with newly developed type 2 diabetes (T2DM) demonstrated that CAV3 gene mutations may lead to changes in protein secondary structure. A severe CAV3 P104L mutation has previously been indicated to influence the phosphorylation of skeletal muscle cells and result in impaired glucose metabolism.

View Article and Find Full Text PDF

The caveolin-3 (CAV3) protein is known to be specifically expressed in various myocytes, and skeletal muscle consumes most of the blood glucose as an energy source to maintain normal cell metabolism and function. The P104L mutation in the coding sequence of the human CAV3 gene leads to autosomal dominant disease limb-girdle muscular dystrophy type 1C (LGMD-1C). We previously reported that C2C12 cells transiently transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis after insulin stimulation.

View Article and Find Full Text PDF

Biochemical and pathological changes result from mutated Caveolin-3 in muscle.

Skelet Muscle

August 2018

Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.

Background: Caveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!