Prosody in birdsong: A review and perspective.

Neurosci Biobehav Rev

Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, P.O. Box 80086, 3508 TB Utrecht, The Netherlands.

Published: October 2017

Birdsong shows striking parallels with human speech. Previous comparisons between birdsong and human vocalizations focused on syntax, phonology and phonetics. In this review, we propose that future comparative research should expand its focus to include prosody, i.e. the temporal and melodic properties that extend over larger units of song. To this end, we consider the similarities between birdsong structure and the prosodic hierarchy in human speech and between context-dependent acoustic variations in birdsong and the biological codes in human speech. Moreover, we discuss songbirds' sensitivity to prosody-like acoustic features and the role of such features in song segmentation and song learning in relation to infants' sensitivity to prosody and the role of prosody in early language acquisition. Finally, we make suggestions for future comparative birdsong research, including a framework of how prosody in birdsong can be studied. In particular, we propose to analyze birdsong as a multidimensional signal composed of specific acoustic features, and to assess whether these acoustic features are organized into prosody-like structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neubiorev.2017.02.016DOI Listing

Publication Analysis

Top Keywords

human speech
12
acoustic features
12
prosody birdsong
8
future comparative
8
birdsong
7
prosody
5
birdsong review
4
review perspective
4
perspective birdsong
4
birdsong striking
4

Similar Publications

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

Background: Autism spectrum disorder poses challenges in social communication and behavior, while Intellectual disabilities are characterized by deficits in cognitive, social, and adaptive skills, frequently accompanied by stereotypies and challenging behaviors. Despite the progress made in autism spectrum disorder research, there is often a lack of research focusing on individuals with co-occurring autism spectrum disorder and intellectual disability. Robot-assisted autism therapies are effective in addressing these needs.

View Article and Find Full Text PDF

Individual differences elucidate the perceptual benefits associated with robust temporal fine-structure processing.

Proc Natl Acad Sci U S A

January 2025

Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15213.

The auditory system is unique among sensory systems in its ability to phase lock to and precisely follow very fast cycle-by-cycle fluctuations in the phase of sound-driven cochlear vibrations. Yet, the perceptual role of this temporal fine structure (TFS) code is debated. This fundamental gap is attributable to our inability to experimentally manipulate TFS cues without altering other perceptually relevant cues.

View Article and Find Full Text PDF

Aim: The perspectives and practices of healthcare professionals regarding ototoxicity in individuals with head and neck cancers are important for the implementation of ototoxicity monitoring. The current study aims to explore the oncologist's awareness and perspectives of ototoxicity and ototoxicity monitoring for individuals with head and neck cancer in a South-Indian district, using qualitative semi-structured interviews.

Method: The COnsolidated criteria for REporting Qualitative research (COREQ) Checklist was used to guide the method of the current qualitative study.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory for Neuropathology, KU Leuven, Leuven, Belgium.

Background: In 43-63% of symptomatic Alzheimer's disease (AD) patients, there is an observed accumulation of misfolded alpha-synuclein (αSyn). Two primary αSyn subtypes have been identified based on the underlying spreading pattern of this pathology: caudo-rostral and amygdala-predominant. Interactions between pathological TDP-43, Tau, and αSyn can aggravate their spread and aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!