The prism adaptation test (PAT) is a preoperative tool that may fine-tune surgical dosage and reduce under- and overcorrection in pediatric partially accommodative esotropia; however, it is resource intensive and the benefits are uncertain. PAT involves correction of esodeviation with prisms, with subsequent assessment for and quantification of change in angle of esodeviation, thereby augmenting the surgical target angle in a subset of patients. We evaluated PAT response and postoperative outcomes in a cohort of children who underwent bilateral medial rectus recession and found that 36% of patients showed a requirement for increase of prism dosage to retain orthotropia during PAT; these patients did better than those whose deviation was stable, with postoperative rate of motor success (defined as ≤10 esotropia) of 100% versus 56%. PAT may be a useful positive prognostic test, and it also identifies a substantial patient population who may avoid undercorrection, the prism builders. However, this cohort may do better postoperatively regardless of the target angle for surgery. Additional randomized studies are required to demonstrate definitive benefit of PAT. Identification of the builder phenotype prior to commencing adaptation may reduce the workload involved in the PAT technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaapos.2016.10.007DOI Listing

Publication Analysis

Top Keywords

bilateral medial
8
medial rectus
8
rectus recession
8
accommodative esotropia
8
target angle
8
pat
6
retrospective evaluation
4
evaluation bilateral
4
recession management
4
management accommodative
4

Similar Publications

Medial orbitofrontal cortex structure, function, and cognition associates with weight loss for laparoscopic sleeve gastrectomy.

Obesity (Silver Spring)

February 2025

Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Objective: The objective of this study was to investigate underlying mechanisms of long-term effective weight loss after laparoscopic sleeve gastrectomy (LSG) and effects on the medial orbitofrontal cortex (mOFC) and cognition.

Methods: A total of 18 individuals with obesity (BMI ≥ 30 kg/m) underwent LSG. Clinical data, cognitive scores, and brain magnetic resonance imaging scans were evaluated before LSG and 12 months after LSG.

View Article and Find Full Text PDF

Purpose: To investigate static and dynamic brain functional alterations in dysthyroid optic neuropathy (DON) using resting-state functional MRI (rs-fMRI) with the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo).

Materials And Methods: Fifty-seven thyroid-associated ophthalmopathy (TAO) patients (23 DON and 34 non-DON) and 27 healthy controls (HCs) underwent rs-fMRI scans. Static and dynamic ALFF (sALFF and dALFF) and ReHo (sReHo and dReHo) values were compared between groups.

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus (SLE) often presents with neuropsychiatric (NP) involvement, including cognitive impairment and depression. Past magnetic resonance imaging (MRI) research in SLE patients showed smaller hippocampal volumes but did not investigate other medial temporal lobe (MTL) regions. Our study aims to compare MTL subregional volumes in SLE patients to healthy individuals (HI) and explore MTL subregional volumes in relation to neuropsychiatric SLE (NPSLE) manifestations.

View Article and Find Full Text PDF

Backgrounds/objective: Deep brain stimulation (DBS) has proved the viability of alleviating depression symptoms by stimulating deep reward-related nuclei. This study aims to investigate the abnormal connectivity profiles among superficial, intermediate, and deep brain regions within the reward circuit in major depressive disorder (MDD) and therefore provides references for identifying potential superficial cortical targets for non-invasive neuromodulation.

Methods: Resting-state functional magnetic resonance imaging data were collected from a cohort of depression patients (N = 52) and demographically matched healthy controls (N = 60).

View Article and Find Full Text PDF

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!