Introduction: This study aimed to evaluate apical transportation (AT), centering ratio (CR), and volume increase (VI) produced after instrumentation of mesiobuccal canals of maxillary molars with hand files, rotary, and reciprocating instruments using micro-computed tomographic (micro-CT) imaging and to demonstrate the ability of digital subtraction radiography (DSR) to evaluate AT.
Methods: Forty-five canals were randomly assigned to either group K, manual K-files; PTN, ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland); or Rec, Reciproc (n = 15 for each group) for preparation. Master apical files were #25, X2 (#25/06), and R25 (#25/08), respectively. Micro-CT imaging was used to measure AT (mm) and CR (mm) at 3 different locations (1, 4, and 7 mm from the apex). VI (mm) was measured for each root third and for the whole canal. DSR (mesiodistal and buccolingual projections) was used to measure AT at 1 mm from the apex.
Results: AT and CR values were statistically similar across the groups at 1, 4, and 7 mm. AT results obtained for the different locations were similar within each group; CR, in turn, showed statistically lower values at 1 mm. VI was statistically similar in all groups. Both DSR and micro-CT imaging showed that AT always occurred on the outside of canal curvature. The highest mean value obtained for AT was 0.215 mm.
Conclusions: AT, CR, and VI were similar for the K, PTN, and Rec groups. AT results were clinically irrelevant. DSR was as effective as micro-CT imaging in AT analysis and could be considered as an alternative method for assessing this outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joen.2016.11.006 | DOI Listing |
Heliyon
December 2024
Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
Rationale And Objective: The visualization of soft tissues, like the meniscus, through X-ray micro-computed tomography (micro-CT), requires the use of contrast agents (CAs). While other studies have investigated CA diffusion in fibrocartilagineous tissues, this work aimed to optimize iodine staining protocols for meniscal tissue that improve their visualization by micro-CT. Specific objectives included evaluating the diffusion of CAs within meniscal samples over time, assessing volume changes due to staining, and identifying the iodine ions absorbed by the tissue.
View Article and Find Full Text PDFPLoS One
January 2025
Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China.
PLoS One
January 2025
Division of Periodontics, Department of Diagnosis and Surgery, UNESP, São Paulo State University "Júlio de Mesquita Filho", Araçatuba, Brazil.
The study aimed to evaluate the potential protection against fractures of oral Q10 supplementation in the tibias of rats exposed to nicotine. Nicotine is known to negatively impact bone density and increase the risk of fractures, in addition to affecting other systems such as the gastrointestinal system, impairing its absorption capacity, negatively affecting bone health. To investigate this, eighty male rats were divided into four groups (n = 20) receiving either nicotine hemisulfate or saline solution (SS) for 28 days.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan;
Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
December 2024
University of Houston, Department of Physics, Houston, Texas, United States.
Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!