Background: In an effort to characterize the fat body and other adipose tissue in the Nile crocodile and the effects of pansteatitis on the structure and composition of the adipose tissue, we evaluated the regional variation in structure and fatty acid composition of healthy farmed crocodiles and those affected by pansteatitis.

Methods: Adipose tissue samples were collected from the subcutaneous, visceral and intramuscular fat and the abdominal fat body of ten 4-year old juvenile crocodiles from Izinthaba Crocodile Farm, Pretoria, South Africa while pansteatitis samples were collected from visceral and intramuscular fat of crocodiles that had died of pansteatitis at the Olifant River, Mpumalanga, also in South Africa. Histomorphology, ultrastrustucture and fatty acid composition by fatty acid methyl ester (FAME) analysis were conducted.

Results: Histological examination showed regional variations in the adipose tissue especially in the collagen content of the ECM, tissue perfusion and division into lobes and lobules by fibrous capsule. Considerable fibrosis, mononuclear cell infiltration especially by macrophages and lymphocytes and toxic changes in the nucleus were observed in the pansteatitis samples. Regional variation in lipid composition especially in Myristoleic (C14:1), Erucic acid (C22:1n9), and Docosadienoic acid (C22:2n6) was observed. Most of the saturated and trans fatty acids were found in significant quantities in the pansteatitis samples, but had very low levels of the cis fatty acid and the essential fatty acids with C18 backbone.

Conclusion: This study demonstrates that there exists some regional variation in histomorphology and fatty acid composition in the healthy adipose tissue of the Nile crocodile. It also showed that pansteatitis in the Nile crocodile might have been triggered by sudden change in energy balance from consumption of dead fish; and probable exposure to toxic environmental conditions with the evidence of up scaled monounsaturated long chain fatty acids composition and toxic changes in the leucocytes observed in pansteatitis in the present study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324266PMC
http://dx.doi.org/10.1186/s12944-016-0405-2DOI Listing

Publication Analysis

Top Keywords

fatty acid
24
adipose tissue
24
acid composition
16
nile crocodile
16
regional variation
12
pansteatitis samples
12
fatty acids
12
fatty
9
pansteatitis
9
acid
8

Similar Publications

Gut Microbiota and Diabetes: Pioneering New Treatment Frontiers.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Panjab, 144001, India.

Diabetes Mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia and poses significant global health challenges. Conventional treatments, such as insulin therapy and lifestyle modifications, have shown limited efficacy in addressing the multifactorial nature of DM. Emerging evidence suggests that gut microbiota, a diverse community of microorganisms critical for metabolism and immune function, plays a pivotal role in metabolic health.

View Article and Find Full Text PDF

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated.

View Article and Find Full Text PDF

Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.

View Article and Find Full Text PDF

Background And Aims: Chronic fatigue is common in patients with inflammatory bowel disease (IBD). The gut microbiota, specifically, microbial diversity and butyrate-producing bacteria have been linked to the fatigue pathogenesis. High-dose oral thiamine reduces fatigue, potentially through gut microbiota modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!