Unwanted antibody responses significantly impact human health, and current options for treating deleterious antibody responses largely rely on broad immunosuppressants that can compromise overall immunity. A desirable alternative is to induce antigen-specific immune tolerance. We have shown that co-presentation of antigen and ligands of B cell sialic acid-binding immunoglobulin-like lectins (Siglecs) on a liposomal nanoparticle induces antigen-specific tolerance. Although Siglec-engaging tolerance-inducing antigenic liposomes (STALs) induce robust B cell tolerance in naïve mice, the full potential of STALs requires long-term tolerance induction and suppression of an ongoing immune response. We hypothesized that STALs encapsulated with rapamycin (RAPA), an immunomodulator, could improve the efficacy of STALs and potentially enable their use in the context of immunological memory. Here, we showed that formulation of STALs with RAPA produced enhanced tolerance induction in naïve mice compared to STALs without RAPA but had minimal impact on inducing tolerance in previously sensitized mice. These findings indicate that the addition of immunomodulators to STALs could be beneficial in tolerance induction and support future development of STALs for the treatment of allergy and autoimmune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496789PMC
http://dx.doi.org/10.1002/cbic.201600702DOI Listing

Publication Analysis

Top Keywords

tolerance induction
16
tolerance
8
antibody responses
8
stals
8
naïve mice
8
stals rapa
8
encapsulating immunosuppressant
4
immunosuppressant enhances
4
enhances tolerance
4
induction
4

Similar Publications

Gemcitabine and docetaxel for high-risk non-muscle-invasive bladder cancer: EuroGemDoce group results.

BJU Int

January 2025

Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, Italy.

Objective: To evaluate the oncological efficacy and safety of sequential intravesical gemcitabine/docetaxel (Gem/Doce) therapy in a European cohort of patients with high-risk and very-high-risk non-muscle-invasive bladder cancer (NMIBC) after previous Bacillus Calmette-Guérin (BCG) treatment.

Materials And Methods: Data were retrospectively collected from 95 patients with NMIBC, treated with Gem/Doce at 12 European centres between 2021 and 2024. Patients previously treated with BCG who had completed a full induction course and received at least one follow-up evaluation were included.

View Article and Find Full Text PDF

Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines.

View Article and Find Full Text PDF

Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is a rapidly progressive, immune-mediated syndrome characterized by the degeneration of Purkinje cells, often associated with the presence of antibodies targeting intracellular antigens within these cells. These autoantibodies are implicated in the induction of cytotoxicity, leading to Purkinje cell death, as demonstrated in in vitro models. However, the precise roles of antibodies and T lymphocytes in mediating neuronal injury remain a subject of ongoing research, with T cells appearing to be the main effectors of cerebellar injury.

View Article and Find Full Text PDF

Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of and .

Plants (Basel)

December 2024

Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests and to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!