Background: Ripening affects the quality and nutritional contents of fleshy fruits and is a crucial process of fruit development. Although several studies have suggested that ubiquitin-conjugating enzyme (E2s or UBC enzymes) are involved in the regulation of fruit ripening, little is known about the function of E2s in papaya (Carica papaya).
Methodology/principal Findings: In the present study, we searched the papaya genome and identified 34 putative UBC genes, which were clustered into 17 phylogenetic subgroups. We also analyzed the nucleotide sequences of the papaya UBC (CpUBC) genes and found that both exon-intron junctions and sequence motifs were highly conserved among the phylogenetic subgroups. Using real-time PCR analysis, we also found that all the CpUBC genes were expressed in roots, stems, leaves, male and female flowers, and mature fruit, although the expression of some of the genes was increased or decreased in one or several specific organs. We also found that the expression of 13 and two CpUBC genes were incresesd or decreased during one and two ripening stages, respectively. Expression analyses indicates possible E2s playing a more significant role in fruit ripening for further studies.
Conclusions: To the best of our knowledge, this is the first reported genome-wide analysis of the papaya UBC gene family, and the results will facilitate further investigation of the roles of UBC genes in fruit ripening and will aide in the functional validation of UBC genes in papaya.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322903 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171357 | PLOS |
mSystems
January 2025
Zoological Institute, Kiel University, Kiel, Germany.
The microbiomes of host organisms and their direct source environments are closely linked and key for shaping microbial community dynamics. The relationship between these linked dynamics is largely unexplored because source substrates are usually unavailable. To address this current knowledge gap, we employed bacteriovorous nematodes as a unique model system, for which source substrates like rotting apples can be easily collected.
View Article and Find Full Text PDFMol Hortic
January 2025
Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.
This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.
View Article and Find Full Text PDFJ Exp Bot
January 2025
College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
DNA methylation plays a crucial role in regulating fruit ripening and seed development. It remains unknown about the dynamic characteristics of DNA methylation and its regulation mechanisms in morpho-physiological dormancy (MPD)-typed seeds with recalcitrant characteristics. The Panax notoginseng seeds are defined by the MPD and are characterized by a strong sensitivity to dehydration during the after-ripening process.
View Article and Find Full Text PDFPlant Methods
January 2025
Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!