Objective: Ovarian steroid hormones (mainly E2 and P4) regulate oviduct physiology. Serum-E2 acts on the oviduct epithelium from the basolateral cell compartment. Upon ovulation, the apical compartment of the oviduct epithelium is temporarily exposed to follicular fluid, which contains much higher levels of E2 than serum. The aim of this study was to evaluate the effects of human periovulatory follicular fluid levels of E2 on oviduct epithelial cells using two porcine in vitro models.
Methods: A cell line derived from the porcine oviductal epithelium (CCLV-RIE270) was characterized (lineage markers, proliferation characteristics and transformation status). Primary porcine oviduct epithelial cells (POEC) were cultured in air-liquid interface and differentiation was assessed histologically. Both cultures were exposed to E2 (10 ng/ml and 200 ng/ml). Proliferation of CCLV-RIE270 and POEC was determined by real-time impedance monitoring and immunohistochemical detection of Ki67. Furthermore, marker gene expression for DNA damage response (DDR) and inflammation was quantified.
Results: CCLV-RIE270 was not transformed and exhibited properties of secretory oviduct epithelial cells. Periovulatory follicular fluid levels of E2 (200 ng/ml) upregulated the expression of inflammatory genes in CCLV-RIE270 but not in POEC (except for IL8). Expression of DDR genes was elevated in both models. A significant increase in cell proliferation could not be detected in response to E2.
Conclusions: CCLV-RIE270 and POEC are complementary models to evaluate the consequences of oviduct exposure to follicular fluid components. Single administration of periovulatory follicular fluid E2 levels trigger inflammatory and DNA damage responses, but not proliferation in oviduct epithelial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322925 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172192 | PLOS |
Environ Int
December 2024
Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China. Electronic address:
Microplastics (MPs) are pervasive environmental contaminants, resulting in unavoidable human exposure. This study identified MPs in follicular fluid and investigated the specific MPs and mechanisms that adversely affect oocytes. MPs in the follicular fluid of 44 infertile women undergoing assisted reproductive technology were measured using Raman microspectroscopy.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary.
The effect of mycotoxin exposure on follicular fluid composition and reproductive outcomes in women undergoing in vitro fertilisation (IVF) was investigated in this study. Twenty-five patients were included, and follicular fluid and serum samples were analysed for various mycotoxins. Principal observations:1.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Objective: Polycystic ovary syndrome (PCOS) is an important factor contributing to infertility in reproductive-aged women. Hyperandrogenism (HA) plays an important role in the pathogenesis of PCOS. This study was conducted to explore the follicular development and endometrial receptivity of different androgen phenotypes in reproductive-aged patients with PCOS.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Biology, Parand Branch, Islamic Azad University, Bahonar Blvd, Tehran, Iran.
The research investigated the capacity of myo-inositol (MI) in order that it improves biochemical markers in serum and follicular fluid and, ultimately, intracytoplasmic sperm injection (ICSI) outcomes of women with PCOS. Sixty infertile patients with PCOS, who were undergoing ovulation induction for ICSI, were randomly divided to two groups. The MI group received 2000 mg myo-inositol + 1 mg folic acid twice a day for 6 weeks with starting the ICSI cycle.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Background: Premature ovarian insufficiency (POI) is a common reproductive disease that is associated with chronic inflammation in ovaries. Interleukin 33 (IL-33) is a pro-inflammatory IL-1 family cytokine, and functions as an alarmin reflecting inflammatory reaction. Our study aimed to investigate levels of IL-33 and its soluble receptor (sST2) in both follicular fluid (FF) and paired serum during different stages of POI, and evaluate their predictive potentials for POI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!