The chamazulene and α-(-)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(-)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011-2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(-)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L SA for the Bona cultivar under heat stress conditions, whereas the highest α-(-)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and α-(-)-bisabolol under normal and heat stress conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302395 | PMC |
http://dx.doi.org/10.3390/foods5030056 | DOI Listing |
Methods Mol Biol
January 2025
Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
Salicylic acid is a member of benzoic acid derivatives, a group of compounds which have a backbone of C6C1 consisting of one carboxyl group and one (or more) hydroxyl group(s) attached to the aromatic ring. Salicylic acid is a signaling compound in systemic acquired resistance (SAR). An increased level of salicylic acid is found in the plant after a fungi's attack, which further induces the accumulation of phytoalexins, low molecular weight defense compounds.
View Article and Find Full Text PDFTrends Plant Sci
January 2025
State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an, 271018, China. Electronic address:
To address the persistent challenge of cell death spread and limitation during effector-triggered immunity (ETI), we propose a 'concentric circle' model. This model outlines a regulatory framework, integrating multiple cells and diverse signaling molecules, including salicylic acid (SA), jasmonic acid (JA), and Ca. By accounting for the varying concentrations and spatiotemporal distributions of these molecules, our model aims for precision in immune defense and regulated cell death.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
July 2024
Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, 563099, Guizhou, China.
Militarine is a monomer molecule with abundant and distinctive biological properties, also the lead member of secondary metabolites in Bletilla striata, while its biosynthesis mechanism is still unknown. To improve the production efficiency of militarine, sodium acetate and salicylic acid (SA) were introduced as elicitors into the suspension-cultured callus of B. striata.
View Article and Find Full Text PDFTree Physiol
January 2025
Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.
View Article and Find Full Text PDFBackground: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!