The ability to stably and specifically conjugate recombinant proteins to one another is a powerful approach for engineering multifunctional enzymes, protein therapeutics, and novel biological materials. While many of these applications have been illustrated through in vitro and in vivo intracellular protein conjugation methods, extracellular self-assembly of protein conjugates offers unique advantages: simplifying purification, reducing toxicity and burden, and enabling tunability. Exploiting the recently described SpyTag-SpyCatcher system, we describe here how enzymes and structural proteins can be genetically encoded to covalently conjugate in culture media following programmable secretion from Bacillus subtilis. Using this approach, we demonstrate how self-conjugation of a secreted industrial enzyme, XynA, dramatically increases its resilience to boiling, and we show that cellular consortia can be engineered to self-assemble functional protein-protein conjugates with tunable composition. This novel genetically encoded modular system provides a flexible strategy for protein conjugation harnessing the substantial advantages of extracellular self-assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.6b00292DOI Listing

Publication Analysis

Top Keywords

extracellular self-assembly
12
protein conjugates
8
bacillus subtilis
8
protein conjugation
8
genetically encoded
8
protein
5
self-assembly functional
4
functional tunable
4
tunable protein
4
conjugates bacillus
4

Similar Publications

Cardiovascular diseases cause significant morbidity and mortality worldwide. Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development. These organoids have applications in drug screening, cardiac disease models and regenerative medicine.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Bacterial plant diseases, worsened by biofilm-mediated resistance, are increasingly threatening global food security. Numerous attempts have been made to develop agrochemicals that inhibit biofilms, however, their ineffective foliar deposition and difficulty in removing mature biofilms remain major challenges. Herein, multifunctional three-component supramolecular nano-biscuits (NI6R@CB[7]@β-CD) are successfully engineered via ordered self-assembly between two macrocycles [cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD)] and (R)-2-naphthol-based bis-imidazolium bromide salt (NI6R).

View Article and Find Full Text PDF

Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability.

View Article and Find Full Text PDF

Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).

Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!