Ultrafine molybdenum sulfide (MoS) nanocrystals are grown on a porous cobalt (Co) foam current collector by atomic layer deposition (ALD) using molybdenum hexacarbonyl and hydrogen sulfide as precursors. When used to catalyze the oxygen evolution reaction (OER), the optimal Co@MoS electrode, even with a MoS loading as small as 0.06 mg cm, exhibits a large cathodic shift of ca. 200 mV in the onset potential (the potential at which the current density is 5 mA cm), a low overpotential of only 270 mV to attain an anodic current density of 10 mA cm, much smaller charge transfer resistance and substantially improved long-term stability at both low and high current densities, with respect to the bare Co foam electrode, showing substantial promise for use as an efficient, low-cost and durable anode in water electrolyzers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr00140a | DOI Listing |
Anal Chim Acta
February 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide-molybdenum disulfide (ZnO-MoS) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI-ZnO to be like the skeleton of a tree for the growth of MoS "leaves" as macro-materials with controlled microstructures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department School of Chemistry, CRANN and AMBER Research Centres, Institution Trinity College Dublin, College Green, Dublin 2, Ireland.
The development of new synthetic strategies to introduce and control chirality in inorganic nanostructures has been highly stimulated by the broad spectrum of potential applications of these exiting nanomaterials. Molybdenum disulfide is among the most investigated transition metal dichalcogenides due to its promising properties for applications that spread from optoelectronic to spintronic. Herein, we report a new two-step approach for the production of chiroptically active semiconductor 2H MoS nanosheets with chiral morphology based on the manipulation of their crystallographic structure.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China.
Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient acetone gas sensor based on Au-modified ZnO porous nanofoam (Au/ZnO) is synthesized by polyvinylpyrrolidone-blowing followed by a calcination method.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!