Fluorescent protein biosensors are popular reporters for biological processes and life sciences, but their fundamental working mechanisms remain unclear. To characterize the functional fluorescence events on their native timescales, we implemented wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) to shed light on a blue-green emission-ratiometric fluorescent protein based Ca biosensor with a single Pro377Arg mutation. The transient Raman modes of the embedded chromophore from ca. 1000-1650 cm exhibit characteristic intensity and frequency dynamics which infer the underlying atomic motions and photochemical reaction stages. Our experimental study reveals the hidden structural inhomogeneity of the protein local environment upon Ca binding with the mutated arginine residue trapping multiple chromophore subpopulations, which manifest distinct time constants of ∼16 and 90 ps for excited state proton transfer (ESPT) following 400 nm photoexcitation. The altered ESPT reaction pathways and emission properties of the Ca biosensor represent the foundational step of rationally designing advanced fluorescent protein biosensors to tune their functionalities by site-specifically altering the local environment (e.g., the active site) of the embedded chromophore.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp08821j | DOI Listing |
Curr Res Food Sci
January 2025
School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.
Introduction: Chronic inflammation is a major risk factor for coronary artery disease (CAD). Currently, the inflammatory cardiovascular risk is assessed via C-reactive protein (CRP) levels measured using a high-sensitivity assay (hsCRP). Monomeric CRP (mCRP) is a locally produced form of CRP that has emerged as a potential biomarker of inflammation.
View Article and Find Full Text PDFIndiana Univ J Undergrad Res
June 2024
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine.
Angiomotins (Amots) are a family of adaptor proteins with important roles in cell growth, migration, and proliferation. The Amot coiled-coil homology (ACCH) domain has a high affinity for non-phosphorylated and mono-phosphorylated phosphatidylinositol which provides specificity in the membrane association. The membrane specificity is linked with targeting and recycling of the membrane protein to maintain normal cell phenotypes and function.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China.
Beyond structural support, plant root systems play crucial roles in the absorption of water and nutrients, fertiliser efficiency and crop yield. However, the molecular mechanism regulating root architecture in rice remains largely unknown. In this study, a short-root rice mutant was identified and named Oscyp22.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!