The demand for dielectric capacitors with higher energy-storage capability is increasing for power electronic devices due to the rapid development of electronic industry. Existing dielectrics for high-energy-storage capacitors and potential new capacitor technologies are reviewed toward realizing these goals. Various dielectric materials with desirable permittivity and dielectric breakdown strength potentially meeting the device requirements are discussed. However, some significant limitations for current dielectrics can be ascribed to their low permittivity, low breakdown strength, and high hysteresis loss, which will decrease their energy density and efficiency. Thus, the implementation of dielectric materials for high-energy-density applications requires the comprehensive understanding of both the materials design and processing. The optimization of high-energy-storage dielectrics will have far-reaching impacts on the sustainable energy and will be an important research topic in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201601727 | DOI Listing |
Phys Chem Chem Phys
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
It is a major challenge to obtain broadband microwave absorption (MA) properties using low dielectric or magnetic nanoparticle-decorated carbon composites due to the limited single conductive loss or polarization loss of the carbon materials used as substrates. Novel pure cellulose-derived graphite carbon (CGC) materials can be used as an exceptional substrate option due to their special defective graphitic carbon structure, which provides both conduction and polarization loss. Herein, CGC@ZnO composites were first synthesized by atomic layer deposition (ALD) for use as microwave absorbents.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, P.R. China.
Metamaterials hold great promise for application in the field of perfect absorbers due to their remarkable ability to manipulate electromagnetic waves. In this work, a full-spectrum ultra-wideband solar absorber with a multilayer metal-dielectric stacked structure is designed. Our absorber is simple and easy to manufacture, with Ti serving as the substrate, overlaid with SiN spacer layers and four pairs of Ti-SiN ring columns.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China.
A comprehensive analysis of BiOBr has been carried out using first-principles density-functional theory (DFT) to explore the electronic structure, energy band structure, and essential properties related to its photocatalytic performance. DFT calculations reveal that BiOBr, BiOBr, BiOBr, BiOBr, BiOBr, and BiOBr have different indirect bandgap values of 2.46 eV, 2.
View Article and Find Full Text PDFRecently, a new plasmon mode, the nodal-line plasmon, was discovered in ZrSiS, which provides promising possibilities for plasmonics or optics. However, there remains a lack of research on the surface plasmon (SP) properties and carrier transport characteristics of ZrSiS. In this paper, we conduct an in-depth study of these properties and compare them with the traditional SP material Au.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!