Evolutionary Roots and Diversification of the Genus .

Front Microbiol

Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de BarcelonaBarcelona, Spain; Institut de Recerca de la Biodiversitat, Universitat de BarcelonaBarcelona, Spain.

Published: February 2017

Despite the importance of diversification rates in the study of prokaryote evolution, they have not been quantitatively assessed for the majority of microorganism taxa. The investigation of evolutionary patterns in prokaryotes constitutes a challenge due to a very scarce fossil record, limited morphological differentiation and frequently complex taxonomic relationships, which make even species recognition difficult. Although the speciation models and speciation rates in eukaryotes have traditionally been established by analyzing the fossil record data, this is frequently incomplete, and not always available. More recently, several methods based on molecular sequence data have been developed to estimate speciation and extinction rates from phylogenies reconstructed from contemporary taxa. In this work, we determined the divergence time and temporal diversification of the genus by applying these methods widely used with eukaryotic taxa. Our analysis involved 150 strains using the concatenated sequences of two housekeeping genes (approximately 2,000 bp). Dating and diversification model analyses were performed using two different approaches: obtaining the consensus sequence from the concatenated sequences corresponding to all the strains belonging to the same species, or generating the species tree from multiple alignments of each gene. We used BEAST to perform a Bayesian analysis to estimate both the phylogeny and the divergence times. A global molecular clock cannot be assumed for any gene. From the chronograms obtained, we carried out a diversification analysis using several approaches. The results suggest that the genus began to diverge approximately 250 millions of years (Ma) ago. All methods used to determine diversification gave similar results, suggesting that the speciation process in this bacterial genus followed a rate-constant (Yule) diversification model, although there is a small probability that a slight deceleration occurred in recent times. We also determined the constant of diversification (λ) values, which in all cases were very similar, about 0.01 species/Ma, a value clearly lower than those described for different eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296313PMC
http://dx.doi.org/10.3389/fmicb.2017.00127DOI Listing

Publication Analysis

Top Keywords

diversification
8
diversification genus
8
fossil record
8
concatenated sequences
8
diversification model
8
evolutionary roots
4
roots diversification
4
genus
4
genus despite
4
despite diversification
4

Similar Publications

Partner fidelity, not geography, drives co-diversification of gut microbiota with hominids.

Biol Lett

January 2025

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.

Bacterial strains that inhabit the gastrointestinal tracts of hominids have diversified in parallel (co-diversified) with their host species. The extent to which co-diversification has been mediated by partner fidelity between strains and hosts or by geographical distance between hosts is not clear due to a lack of strain-level data from clades of hosts with unconfounded phylogenetic relationships and geographical distributions. Here, I tested these competing hypotheses through meta-analyses of 7121 gut bacterial genomes assembled from wild-living ape species and subspecies sampled throughout their ranges in equatorial Africa.

View Article and Find Full Text PDF

The Developmental Origin of Novel Complex Morphological Traits in Lepidoptera.

Annu Rev Entomol

January 2025

Department of Biology and Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico.

Novel traits in the order Lepidoptera include prolegs in the abdomen of larvae, scales, and eyespot and band color patterns in the wings of adults. We review recent work that investigates the developmental origin and diversification of these four traits from a gene-regulatory network (GRN) perspective. While prolegs and eyespots appear to derive from distinct ancestral GRNs co-opted to novel body regions, scales derive from in situ modifications of a sensory bristle GRN.

View Article and Find Full Text PDF

An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

Plant Cell

December 2024

Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.

View Article and Find Full Text PDF

With the progress of modern technology and the diversification of societal demands, traditional materials with single properties can no longer meet the requirements of complex and constantly evolving application scenarios. To tackle intricate biomedical applications like disease diagnosis and treatment, scientists are focusing on exploring the design of novel multifunctional biomaterials that possess diverse activities. Bismuth titanate (BiTiO, BTO), which has multifunctionality and great application potential, unfortunately suffers from inadequate photocatalytic performance.

View Article and Find Full Text PDF

Rethinking Optimal Immunogens to Face SARS-CoV-2 Evolution Through Vaccination.

Influenza Other Respir Viruses

January 2025

Área de Investigación en Vacunas, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain.

SARS-CoV-2, which originated in China in late 2019, quickly fueled the global COVID-19 pandemic, profoundly impacting health and the economy worldwide. A series of vaccines, mostly based on the full SARS-CoV-2 Spike protein, were rapidly developed, showing excellent humoral and cellular responses and high efficacy against both symptomatic infection and severe disease. However, viral evolution and the waning humoral neutralizing responses strongly challenged vaccine long term effectiveness, mainly against symptomatic infection, making necessary a strategy of repeated and updated booster shots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!