Vibrio cholerae can colonize the gastrointestinal track of humans and cause the disease cholera. During colonization, the alternative sigma factor, RpoS, controls a process known as "mucosal escape response," defining a specific spatial and temporal response and effecting chemotaxis and motility. In this report, the expression and proteolytic control of RpoS in V. cholerae was characterized. To date, aspects of proteolysis control, the involved components, and proteolysis regulation have not been addressed for RpoS in V. cholerae. Similar to Escherichia coli, we find that the RpoS protein is subjected to regulated intracellular proteolysis, which is mediated by homologues of the proteolysis-targeting factor RssB and the protease complex ClpXP. As demonstrated, RpoS expression transiently peaks after cells are shifted from rich to minimal growth medium. This peak level is dependent on (p)ppGpp-activated rpoS transcription and controlled RpoS proteolysis. The RpoS peak level also correlates with induction of a chemotaxis gene, encoding a methyl-accepting chemotaxis protein, earlier identified to belong to the mucosal escape response pathway. These results suggest that the RpoS expression peak is linked to (p)ppGpp alarmone increase, leading to enhanced motility and chemotaxis, and possibly contributing to the mucosal escape response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmm.2017.01.006 | DOI Listing |
PLoS Pathog
December 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China.
Antibiotic resistance has become a critical health crisis globally. Traditional strategies using antibiotics can lead to drug-resistance, while inorganic antimicrobial agents can cause severe systemic toxicity. Here, we have developed a dual-antibiotic hydrogel delivery system (PDA-Ag@Levo/CMCS), which can achieve controlled release of clinical antibiotics levofloxacin (Levo) and classic nanoscale antibiotic silver nanoparticles (AgNPs), effectively eliminating drug-resistant .
View Article and Find Full Text PDFInfect Immun
December 2024
Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA.
, the Lyme disease pathogen, continuously changes its gene expression profile in order to adapt to ticks and mammalian hosts. The alternative sigma factor RpoS plays a central role in borrelial host adaptation. Global transcriptome analyses suggested that more than 100 genes might be regulated by RpoS, but the main part of the regulon remains unexplored.
View Article and Find Full Text PDFmSystems
December 2024
Department of Biology, Harvey Mudd College, Claremont, California, USA.
Unlabelled: Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type , , , , , and , as well as ∆ strains of and .
View Article and Find Full Text PDFAppl Environ Microbiol
November 2024
National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China.
The overuse and wanton discharge of antibiotics produces a threat to bacteria in the environment, which, in turn, stimulates the more rapid emergence of antibiotic-resistant bacteria. actively forms biofilms to protect the population under tetracycline stress, but the molecular mechanism remains unclear. This study found that tetracycline at sub-minimal inhibitory concentrations increased cyclic diguanylate (c-di-GMP), a second messenger that positively regulates biofilm formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!