A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Equation of state and shock compression of warm dense sodium-A first-principles study. | LitMetric

Equation of state and shock compression of warm dense sodium-A first-principles study.

J Chem Phys

Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA.

Published: February 2017

As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states [B. Militzer and K. P. Driver, Phys. Rev. Lett. 115, 176403 (2015)] at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm and 10-1.29×10 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that are consistent with DFT-MD at intermediate temperatures of 2×10 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. We also compute the temperature-density dependence of thermal and pressure ionization processes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4976559DOI Listing

Publication Analysis

Top Keywords

equation state
12
hugoniot curve
12
shock hugoniot
8
high compression
8
shock
5
state shock
4
compression
4
shock compression
4
compression warm
4
warm dense
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!