Aggregation is frequently encountered during coating nanoparticles, especially when the core is not solid and the coating polyelectrolytes are weak. Here, the coating of a nanoliposome with two weak polyelectrolytes, alginate and chitosan, is investigated. First, quartz crystal microbalance with dissipation, atomic force microscopy, scanning electron microscopy, and energy dispersive spectroscopy analyses confirm the feasibility of firm adsorption of up to 16 layers of weak polyelectrolytes to the liposomal surface. Titrations are then performed to identify the lowest amounts of polyelectrolytes required to make eight saturated coating layers using the washless method. Significantly improved yields and reproducibility (almost 100%) are achieved, in addition to control over layer thickness. Attenuated total reflectance Fourier transform infrared spectroscopy studies confirm the success of layering. This is special since scientists always attempt to reduce nanoparticle aggregation by substituting the soft core, using one strong polyelectrolyte, or contending with lower yields or numbers of coating layers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201600535DOI Listing

Publication Analysis

Top Keywords

washless method
8
weak polyelectrolytes
8
coating layers
8
coating
6
method enables
4
enables multilayer
4
multilayer coating
4
coating aggregation-prone
4
aggregation-prone nanoparticulate
4
nanoparticulate drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!