The human immune system is a tightly regulated network that protects the host from disease. An important aspect of this is the balance between pro-inflammatory Th17 cells and anti-inflammatory T regulatory (Treg) cells in maintaining immune homeostasis. Foxp3+ Treg are critical for sustaining immune tolerance through IL-10 and transforming growth factor-β while related orphan receptor-γt+ Th17 cells promote immunopathology and auto-inflammatory diseases through the actions of IL-17A, IL-21 and IL-22. Therefore, imbalance between Treg and Th17 cells can result in serious pathology in many organs and tissues. Recently, certain IL-17-producing cells have been found to be protective against infectious disease, particularly in relation to extracellular bacteria such Streptococcus pneumoniae; a number of other novel IL-17-secreting cell populations have also been reported to protect against a variety of other pathogens. In this mini-review, the dual roles of Treg and Th17 cells are discussed in the context of autoimmunity and infections, highlighting recent advances in the field. Development of novel strategies specifically designed to target these critical immune response pathways will become increasingly important in maintenance of human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1348-0421.12471 | DOI Listing |
BMC Surg
January 2025
General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
Background And Aim: Hepatocellular carcinoma (HCC) is a highly immunogenic tumor and the third leading cause of cancer-related deaths worldwide with an increasing incidence. Therefore, the combination of immunotherapy with other approaches, such as anti-angiogenic agents and local area therapy, has become a new strategy for HCC treatment.
Methods: We searched PubMed and Web of Science and extracted publications relating to the radiofrequency ablation (RFA) and immunotherapy.
Trends Immunol
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China. Electronic address:
Chronic inflammatory diseases show significant heterogeneity in their phenotypes, with diverse immune cells and mediators interacting in response to various stimuli. This review proposes the concept of the 'inflammazone' framework - which maps the distribution of immune components driving disease pathogenesis - using sarcoidosis and psoriasis as examples. Sarcoidosis features granulomatous inflammation with macrophages and CD4 T cells, which can spread to lymph nodes and other organs.
View Article and Find Full Text PDFCytokine Growth Factor Rev
January 2025
MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA. Electronic address:
IL-17A, referred to as IL-17, is the founding member of a family of pro-inflammatory cytokines, including IL-17B, IL-17C, IL-17D, IL-17E (or IL-25), and IL-17F, which act via receptors IL-17RA to IL-17RE, and elicit potent cellular responses that impact diverse diseases. IL-17's interactions with various cytokines include forming a heterodimer with IL-17F and being stimulated by IL-23's activation of Th17 cells, which can lead to inflammation and autoimmunity. IL-17 is implicated in infectious diseases and inflammatory disorders such as rheumatoid arthritis and psoriasis, promoting neutrophil recruitment and anti-bacterial immunity, but potentially exacerbating fungal and viral infections, revealing its dual role as protective and pathologic.
View Article and Find Full Text PDFCytokine
January 2025
Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India. Electronic address:
Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Rheumatology and Immunology and Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, 100044, China.
Objectives: The objective of this study was to evaluate the efficacy and safety of tofacitinib in the treatment of active dermatomyositis (DM) and anti-synthetase syndrome (ASS).
Methods: Tofacitinib was administered at a dose of 5 mg twice daily to patients who exhibited inadequate response to conventional treatments. The primary end point was the reduction of T follicular helper (Tfh) cells at week 24.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!