High-throughput drawing and testing of metallic glass nanostructures.

Nanoscale

Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.

Published: March 2017

Thermoplastic embossing of metallic glasses promises direct imprinting of metal nanostructures using templates. However, embossing high-aspect-ratio nanostructures faces unworkable flow resistance due to friction and non-wetting conditions at the template interface. Herein, we show that these inherent challenges of embossing can be reversed by thermoplastic drawing using templates. The flow resistance not only remains independent of wetting but also decreases with increasing feature aspect-ratio. Arrays of assembled nanotips, nanowires, and nanotubes with aspect-ratios exceeding 1000 can be produced through controlled elongation and fracture of metallic glass structures. In contrast to embossing, the drawing approach generates two sets of nanostructures upon final fracture; one set remains anchored to the metallic glass substrate while the second set is assembled on the template. This method can be readily adapted for high-throughput fabrication and testing of nanoscale tensile specimens, enabling rapid screening of size-effects in mechanical behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr00126fDOI Listing

Publication Analysis

Top Keywords

metallic glass
12
flow resistance
8
high-throughput drawing
4
drawing testing
4
metallic
4
testing metallic
4
nanostructures
4
glass nanostructures
4
nanostructures thermoplastic
4
embossing
4

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

VG@nAu-based fluorescent biosensor for grading Alzheimer's disease by detecting P-tau181 protein in clinical samples.

Anal Chim Acta

February 2025

Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:

Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.

View Article and Find Full Text PDF

Synthesis of Nanocrystal-Embedded Bulk Metallic Glass Composites by a Combination of Mechanical Alloying and Vacuum Hot Pressing.

Materials (Basel)

January 2025

Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110-301, Taiwan.

Bulk metallic glasses (i.e., BMGs) have attracted a lot of research and development interest due to their unique properties.

View Article and Find Full Text PDF

MEMS Smart Glass with Larger Angular Tuning Range and 2D Actuation.

Micromachines (Basel)

December 2024

Institute of Nanostructure Technologies and Analytics (INA), Technological Electronics Department and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.

Millions of electrostatically actuatable micromirror arrays have been arranged in between windowpanes in inert gas environments, enabling active daylighting in buildings for illumination and climatization. MEMS smart windows can reduce energy consumption significantly. However, to allow personalized light steering for arbitrary user positions with high flexibility, two main limitations must be overcome: first, limited tuning angle spans by MEMS pull-in effects; and second, the lack of a second orthogonal tuning angle, which is highly required.

View Article and Find Full Text PDF

The Effect of Metal Shielding Layer on Electrostatic Attraction Issue in Glass-Silicon Anodic Bonding.

Micromachines (Basel)

December 2024

Zhejiang Xinsheng Semiconductor Technology, Zhuji 311899, China.

Silicon-glass anode bonding is the key technology in the process of wafer-level packaging for MEMS sensors. During the anodic bonding process, the device may experience adhesion failure due to the influence of electric field forces. A common solution is to add a metal shielding layer between the glass substrate and the device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!