Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320557PMC
http://dx.doi.org/10.1038/srep43163DOI Listing

Publication Analysis

Top Keywords

prophylactic immunity
16
mosquito aedes
8
aedes aegypti
8
burs burs
8
cuticle tanning
8
homodimers induce
8
bursicon homodimers
8
newly emerged
8
r-bursicon homodimers
8
amp genes
8

Similar Publications

Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections.

View Article and Find Full Text PDF

is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.

View Article and Find Full Text PDF

Shiga Toxin: Emerging Producer Strains, Prophylactic Approaches, and Application in Cancer Therapy.

J Cancer Prev

December 2024

Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Hamadan, IranAvicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.

Shiga toxin-producing is the most prevalent bacterial strain responsible for Shiga toxin-related infections. While Shiga toxin is inherently toxic, it has potential therapeutic applications as a component of anticancer drugs. Despite its association with infections and harmful effects on human health, Shiga toxin is being explored as a viable element in drug delivery systems targeting cancer cells.

View Article and Find Full Text PDF

Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.

View Article and Find Full Text PDF

Prevention of Infections Among Pediatric Solid Organ Transplant Recipients With Asplenia or Hyposplenism.

Pediatr Transplant

February 2025

Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Pediatric solid organ transplant (SOT) recipients with splenic dysfunction are at increased risk for infections, and tailored guidance on the management of asplenia/hyposplenism among SOT recipients is often lacking. The purpose of this article is to provide practice recommendations via a frequently asked questions (FAQs) format that focuses on three main domains: the identification of asplenia/hyposplenism among SOT recipients/candidates, prophylactic strategies for mitigating the risk of invasive disease associated with splenic dysfunction in the context of transplantation, and the provision of appropriate patient counseling on the risks associated with asplenia/hyposplenism. Answers to the FAQs are based on international expert opinion informed by practices for managing splenic dysfunction and associated data in other populations with asplenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!