The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320501 | PMC |
http://dx.doi.org/10.1038/srep42633 | DOI Listing |
Food Chem (Oxf)
June 2025
Dept. of Biomedical and Biotechnological Sciences, University of Catania.
In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.
View Article and Find Full Text PDFJ Econ Entomol
January 2025
Department of Agronomy, María de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus de Rabanales, Building C4 Celestino Mutis, 14071 Cordoba, Spain.
This work aimed to optimize olive fruit fly (OFF) Bactrocera oleae (Rossi) (Diptera: Tephritidae) monitoring and integrated management, thereby ensuring optimal and less-costly decision-making and timely intervention. Field trials in Andalusia (Spain) were undertaken over 2 years to optimize trap model, color, size, and density for the accurate determination of pest spatial distribution and damage as a function of olive cultivar. McPhail traps and yellow sticky panels outperformed the other 4 models with respect to the number of OFF captured.
View Article and Find Full Text PDFPathogens
December 2024
School of Agriculture Science, Murdoch University, Murdoch, WA 6150, Australia.
Malaria and other haemosporidian parasites are common in reptiles. During baseline health surveys of sea turtles in Western Australia (WA), haemosporidian parasites were detected in flatback () and green () turtle erythrocytes during routine blood film examination. 130 blood samples were screened via polymerase chain reaction (PCR), including 105 20 and 5 olive ridley turtles ().
View Article and Find Full Text PDFFoods
December 2024
Instituto de la Grasa (IG), CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. Utrera km 1, 41013 Sevilla, Spain.
Table olive processing implies losses of mineral nutrients and increased sodium levels due to using brine during fermentation and storage. This study investigated fortifying traditional table olives with mixtures of KCl, CaCl, and MgCl during packaging to enhance mineral content while reducing NaCl. This research analyses the distribution of cations between olives and brines and employed the Response Surface Methodology (RSM) to model mineral content and their contributions to the Reference Daily Intake (RDI).
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Faculty of Medicine, Nutrition and Dietetics School, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile.
Olive leaves are agro-industrial waste that pose an environmental management problem. However, they contain polyphenolic compounds with important bioactive properties beneficial to human. This study aimed to evaluate the effectiveness of two extraction technologies (pressurized liquid extraction and ultrasound-assisted extraction) combined with green solvents (pure water, 15% ethanol, and 15% glycerol) at 50 °C and 70 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!