Predicting Alpha Helical Transmembrane Proteins Using HMMs.

Methods Mol Biol

Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, Lamia, 35100, Greece.

Published: January 2018

Alpha helical transmembrane (TM) proteins constitute an important structural class of membrane proteins involved in a wide variety of cellular functions. The prediction of their transmembrane topology, as well as their discrimination in newly sequenced genomes, is of great importance for the elucidation of their structure and function. Several methods have been applied for the prediction of the transmembrane segments and the topology of alpha helical transmembrane proteins utilizing different algorithmic techniques. Hidden Markov Models (HMMs) have been efficiently used in the development of several computational methods used for this task. In this chapter we give a brief review of different available prediction methods for alpha helical transmembrane proteins pointing out sequence and structural features that should be incorporated in a prediction method. We then describe the procedure of the design and development of a Hidden Markov Model capable of predicting the transmembrane alpha helices in proteins and discriminating them from globular proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6753-7_5DOI Listing

Publication Analysis

Top Keywords

alpha helical
16
helical transmembrane
16
transmembrane proteins
16
prediction transmembrane
8
hidden markov
8
transmembrane
7
proteins
7
predicting alpha
4
helical
4
proteins hmms
4

Similar Publications

Convergent evolution of type I antifreeze proteins from four different progenitors in response to global cooling.

BMC Mol Cell Biol

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.

Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs.

View Article and Find Full Text PDF

CCfrag: scanning folding potential of coiled-coil fragments with AlphaFold.

Bioinform Adv

December 2024

Department of Protein Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany.

Motivation: Coiled coils are a widespread structural motif consisting of multiple α-helices that wind around a central axis to bury their hydrophobic core. While AlphaFold has emerged as an effective coiled-coil modeling tool, capable of accurately predicting changes in periodicity and core geometry along coiled-coil stalks, it is not without limitations, such as the generation of spuriously bent models and the inability to effectively model globally non-canonical-coiled coils. To overcome these limitations, we investigated whether dividing full-length sequences into fragments would result in better models.

View Article and Find Full Text PDF

Identification and mechanistic study of piceatannol as a natural xanthine oxidase inhibitor.

Int J Biol Macromol

December 2024

Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China. Electronic address:

Natural Xanthine oxidase (XOD) inhibitors represent promising therapeutic agents for hyperuricemia (HUA) treatment due to their potent efficacy and favorable safety profiles. This study involved the construction of a comprehensive database of 315 XOD inhibitors and development of 28 machine learning-based QSAR models. The ChemoPy light gradient boosting machine model exhibited the best performance (AUC = 0.

View Article and Find Full Text PDF

Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.

View Article and Find Full Text PDF

The role of amphipathic and cationic helical peptides in Parkinson's disease.

Protein Sci

January 2025

Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.

Peptides are attracting a growing interest for therapeutic applications in biomedicine. In Parkinson's disease (PD), different human endogenous peptides have been associated with beneficial effects, including protein aggregation inhibition, reduced inflammation, or the protection of dopaminergic neurons. Such effects seem to be connected to the spatial arrangement of peptide side chains, and many of these human molecules share common conformational traits, displaying a distinctive amphipathic and cationic helical structure, which is believed to be crucial for their activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!