Athetis lepigone was a new lepidopteran pest and caused severe damage to maize crops in China. We have detected that Cry1Ac protoxin and toxin were highly active against the larvae of A. lepigone. However, there is no report about the mode of action of Bt Cry1Ac toxin against this pest until now. A 110 kDa APN5 protein from BBMV of A. lepigone was identified as the binding receptor of Cry1Ac toxin using Ligand blotting. The Cry1Ac receptor APN5 was cloned from A. lepigone larval midgut mRNA and named as AlAPN5 (GenBank accession no.: KU950745). AlAPN5 had a GATEN motif and been classified to Class 5 APNs. 79.2% reduction in mortality was observed when A. lepigone larvae were injected with siRNA of the AlAPN5 gene and treated with Cry1Ac toxin. These data demonstrate that AlAPN5 is a putative functional receptor and maybe the only receptor of Cry1Ac in A. lepigone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-017-1215-0 | DOI Listing |
Front Physiol
October 2024
Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Int J Mol Sci
October 2024
Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China.
Appl Environ Microbiol
October 2024
Department of Entomology, Cornell University, Geneva, New York, USA.
The resistance to the insecticidal protein Cry1Ac from the bacterium (Bt) in the cabbage looper, , has previously been identified to be associated with a frameshift mutation in the ABC transporter ABCC2 gene and with altered expression of the aminopeptidase N (APN) genes and , shown as missing of the 110-kDa APN1 (phenotype APN1¯) in larval midgut brush border membrane vesicles (BBMV). In this study, genetic linkage analysis identified that the APN1¯ phenotype and the mutation in Cry1Ac-resistant segregated independently, although they were always associated under Cry1Ac selection. The mutation and APN1¯ phenotype were separated into two strains respectively.
View Article and Find Full Text PDFPestic Biochem Physiol
September 2024
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
J Agric Food Chem
September 2024
State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
Synergistic factors can enhance the toxicity of Bt toxins and delay the development of Bt resistance. Previous research has demonstrated that a cadherin fragment (HaCad-TBR) increased the toxicity of Cry1Ac in larvae but did not have a synergistic effect on Cry1B, Cry1C, and Cry1F toxins. In this study, a fusion protein (HaCad-TBR-2D3 V) derived from HaCad-TBR and a Bt Cry1-specific antibody peptide was expressed in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!