Athetis lepigone was a new lepidopteran pest and caused severe damage to maize crops in China. We have detected that Cry1Ac protoxin and toxin were highly active against the larvae of A. lepigone. However, there is no report about the mode of action of Bt Cry1Ac toxin against this pest until now. A 110 kDa APN5 protein from BBMV of A. lepigone was identified as the binding receptor of Cry1Ac toxin using Ligand blotting. The Cry1Ac receptor APN5 was cloned from A. lepigone larval midgut mRNA and named as AlAPN5 (GenBank accession no.: KU950745). AlAPN5 had a GATEN motif and been classified to Class 5 APNs. 79.2% reduction in mortality was observed when A. lepigone larvae were injected with siRNA of the AlAPN5 gene and treated with Cry1Ac toxin. These data demonstrate that AlAPN5 is a putative functional receptor and maybe the only receptor of Cry1Ac in A. lepigone.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-017-1215-0DOI Listing

Publication Analysis

Top Keywords

receptor cry1ac
12
cry1ac toxin
12
athetis lepigone
8
lepigone
7
cry1ac
6
receptor
5
toxin
5
aminopeptidase apn5
4
apn5 putative functional
4
putative functional receptor
4

Similar Publications

Cry1Ac toxin binding in the velvetbean caterpillar : study of midgut aminopeptidases N.

Front Physiol

October 2024

Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Article Synopsis
  • - The velvetbean caterpillar significantly affects soybean crops in Brazil, and biopesticides like Bt (Bacillus thuringiensis) utilize Crystal toxins (Cry) to kill these pests by targeting their midgut receptors, such as aminopeptidase N (APN).
  • - This study aims to identify and characterize APNs in the caterpillar’s midgut to understand how Cry1Ac interacts with its receptors, which is vital for managing pest resistance against the biopesticide.
  • - Research methods included immunohistochemistry, aminopeptidase activity assays, and mass spectrometry, leading to the discovery of seven APNs potentially involved in Cry toxin binding, as well as variations in expression levels
View Article and Find Full Text PDF

Transcriptomic Analysis of the Response of the Larva Midgut to 2913 Infection.

Int J Mol Sci

October 2024

Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China.

Article Synopsis
  • - The study focuses on the Lepidoptera pest Denis Schiffermuller, which harms Pinaceae plants, and analyzes the midgut transcriptome of larvae infected with strain 2913 over various time intervals, identifying 7497 differentially expressed genes (DEGs) related to the infection.
  • - Among these DEGs, several genes linked to toxin activation, receptor proteins for insecticidal proteins, and metabolic detoxification were highlighted, suggesting a complex response mechanism in the larvae to counteract infection over time.
  • - The research indicates that enzymes like trypsin and chymotrypsin play roles in activating and degrading toxins, while certain protein expressions may either enhance or weaken the larvae's resistance to the pest strain
View Article and Find Full Text PDF

The resistance to the insecticidal protein Cry1Ac from the bacterium (Bt) in the cabbage looper, , has previously been identified to be associated with a frameshift mutation in the ABC transporter ABCC2 gene and with altered expression of the aminopeptidase N (APN) genes and , shown as missing of the 110-kDa APN1 (phenotype APN1¯) in larval midgut brush border membrane vesicles (BBMV). In this study, genetic linkage analysis identified that the APN1¯ phenotype and the mutation in Cry1Ac-resistant segregated independently, although they were always associated under Cry1Ac selection. The mutation and APN1¯ phenotype were separated into two strains respectively.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how Cry and Vip proteins from Bacillus thuringiensis (Bt) are used to combat major pests like the cotton bollworm, Helicoverpa armigera.
  • It investigates the role of insect aquaporin (AQP) proteins in facilitating rapid water influx in larval midgut cells after Cry toxin damages cell membranes.
  • Despite identifying several functional HaAQPs, knocking out any single AQP gene did not significantly affect the pest's susceptibility to Bt toxins, indicating a compensatory mechanism among the AQPs.
View Article and Find Full Text PDF

Synergism of Cry1 Toxins by a Fusion Protein Derived from a Cadherin Fragment and an Antibody Peptide.

J Agric Food Chem

September 2024

State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

Synergistic factors can enhance the toxicity of Bt toxins and delay the development of Bt resistance. Previous research has demonstrated that a cadherin fragment (HaCad-TBR) increased the toxicity of Cry1Ac in larvae but did not have a synergistic effect on Cry1B, Cry1C, and Cry1F toxins. In this study, a fusion protein (HaCad-TBR-2D3 V) derived from HaCad-TBR and a Bt Cry1-specific antibody peptide was expressed in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!