Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease. Recent studies employing microRNA-seq and genome-wide sequencing have identified some non-coding RNAs that are influentially involved in AD pathogenesis. Non-coding RNAs can compete with other endogenous RNAs by microRNA response elements (MREs) and manipulate biological processes, such as tumorigenesis. However, only a few non-coding RNAs have been reported in the pathogenesis of AD. In this study, we constructed the first competing endogenous RNA (ceRNA) network leveraging whole transcriptome sequencing and a previously studied microRNA-seq of APPswe/PS1ΔE9 transgenic mice. The underlying mechanisms for the involvement of ceRNA in AD were validated using the Dual Luciferase Reporter Assay, detection of transcription levels by quantitative RT-PCR and translation levels by Western blotting, and morphological examination in primary cultured neurons. In the ceRNA network, four lncRNAs (C030034L19Rik, , A830012C17Rik, and Gm15477) and five miRNAs (miR-182-5p, miR-330-5p, miR-326-3p, miR-132-3p, and miR-484) are enriched in nine pathways and an AD-related gene pool. Among them, Ribonuclease P RNA component H1 () is upregulated in the cortex of APPswe/PS1ΔE9 mice compared to wild type controls. binds to miR326-3p/miR-330-5p and causes the release of their downstream target , which leads to CDC42 upregulation. This effect was disrupted upon mutation of the MRE on . Moreover, overexpression of increased dendritic spine density in primary cultured hippocampal pyramidal neurons, whereas knocking down of had the reverse effect. In conclusion, modulates CDC42 expression level in a ceRNA-dependent manner, which may represent a compensatory mechanism in the early stage of the AD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293807 | PMC |
http://dx.doi.org/10.3389/fnmol.2017.00027 | DOI Listing |
Dig Dis Sci
January 2025
Department of Gastroenterology and Hepatology, Loyola University Medical Center, 2160 S First Ave, Maywood, IL, 60153, USA.
Esophageal cancer is a common and often deadly malignancy, with treatment success depending largely on the stage at the time of diagnosis. Recently, studies have examined the role of non-coding RNAs in esophageal cancer pathogenesis, prognosis and therapy. This perspective specifically examines interactions long non-coding RNAs have with other RNA molecules in various facets of esophageal cancer.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.
View Article and Find Full Text PDFJ Neurochem
January 2025
Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
Epitranscriptomic regulation of cell functions involves multiple post-transcriptional chemical modifications of coding and non-coding RNA that are increasingly recognized in studying human brain disorders. Although rodent models are presently widely used in neuroepitranscriptomic research, the zebrafish (Danio rerio) has emerged as a useful and promising alternative model species. Mounting evidence supports the importance of RNA modifications in zebrafish CNS function, providing additional insights into epitranscriptomic mechanisms underlying a wide range of brain disorders.
View Article and Find Full Text PDFCell Biosci
January 2025
Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations.
View Article and Find Full Text PDFCommun Biol
January 2025
Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!