Insulin delivered to the level of the cribriform plate (intranasal insulin) is being investigated for its ability to enhance memory in people with Alzheimer's disease (AD). Recent work has shown intranasal insulin can be detected in young CD-1 mice within 5 min and is still present 60 min after injection. The current study determined whether intranasal insulin transport and the subsequent brain distribution of insulin varies in young, healthy mice (CD-1) compared to those with an AD-like phenotype (aged SAMP8) or those pre-disposed to develop such a phenotype (young SAMP8). We showed transport does not vary among these three mouse cohorts, suggesting that intranasal uptake and brain pharmacokinetics do not differ with AD-like signs or the genetic predisposition to developing them. We found that co-administration with bovine serum albumin increased levels of insulin in most brain regions. In addition, the insulin receptor inhibitor, S961, decreases the amount of insulin transported throughout the brain after intranasal injection. These results show insulin delivery to the brain by intranasal administration can be modified with agents such as albumin, may be dependent on the insulin receptor, and is not affected by an AD-like phenotype as presented by the SAMP8 mouse.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-161095DOI Listing

Publication Analysis

Top Keywords

intranasal insulin
16
insulin receptor
12
insulin
11
insulin transport
8
ad-like phenotype
8
brain intranasal
8
intranasal
7
brain
5
transport preserved
4
preserved in aged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!