The design of liquid crystalline hydrogels knitted with silver nanoparticles in macroscopic ordering is becoming a subject of research interest due to their promising multifunctional applications in biomedical and optoelectronic applications. The present work describes the development of liquid crystalline Schiff-based hydrogel decorated with silver nanoparticles and the demonstration of its antifungal applications. Schiff base was prepared from polyglucanaldehyde and chitosan, and the former was prepared by the oxidation of amylose (polyglucopyranose) isolated from abundantly available unutilized jackfruit seed starch. Self-assembled silver columns decorated with macroscopically ordered networks were prepared in a single step of in situ condensation and a reduction/complexation process. The various noncovalent interactions among the -OH, -C═O, and -NH impart rigidity and ordering for the formation of macroscopically ordered liquid crystalline hydrogel and the Ag(I) complexation evidenced from the studies made by FT-IR spectroscopy in combination with rheology and microscopic techniques such as SEM, TEM, AFM, XRD, and PLM. The antifungal studies were screened using species of Candida by disc diffusion method. The MIC and MFC values, in vitro antifungal studies, reactive oxygen species (ROS) production, and propidium iodide (PI) uptake results suggest that the present macroscopically ordered liquid crystalline hydrogel system can be considered an excellent candidate for topical applications. All these results suggest that this design strategy can be exploited for the incorporation of biologically relevant metal nanoparticles for developing unique robust hydrogels for multifunctional applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.6b00706DOI Listing

Publication Analysis

Top Keywords

liquid crystalline
20
macroscopically ordered
16
ordered liquid
12
crystalline hydrogel
12
topical applications
8
applications design
8
silver nanoparticles
8
multifunctional applications
8
antifungal studies
8
applications
6

Similar Publications

Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.

View Article and Find Full Text PDF

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Surfactant-free W/O high internal phase emulsions co-stabilized by beeswax and phytosterol crystal scaffold: A promising fat mimetic with enhanced mechanical and mouthfeel properties.

Food Res Int

February 2025

School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China.

Water-in-oil high internal phase emulsions (W/O-HIPEs) typically rely on large amounts of surfactants to disperse water droplets and usually use crystalline saturated triacylglycerides (TAGs) to enhance processing properties. However, these practices conflict with consumer demands for 'natural' ingredients. This study seeks to develop novel crystal fractions similar to saturated TAGs for the preparation of W/O-HIPEs as low-calorie fat mimetics, focusing on their mechanical and mouthfeel properties, which have received little attention thus far.

View Article and Find Full Text PDF

Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery.

Pharm Res

January 2025

Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.

Improving the bioavailability  of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.

View Article and Find Full Text PDF

Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!