Objective: This study investigates the hypoperfusion effects of epinephrine in local anesthesia in eyelid surgery. A novel form of extended-wavelength diffuse reflectance spectroscopy was evaluated.
Methods: Blood perfusion in porcine eyelid flaps was measured using laser Doppler velocimetry and laser speckle contrast imaging, whereas the tissue response was measured using diffuse reflectance spectroscopy with a broad spectrum (450-1550 nm). Epinephrine was either injected cumulatively, 0.1 (1:10,000,000), 1.0 (1:1,000,000), 10 (1:100 000), and 100 μg/ml (1:10 000), to determine the dose-response relation, or given as a single dose (10 μg/ml). Control experiments were performed with saline or lidocaine.
Results: Increasing concentrations of epinephrine resulted in a gradual decrease in tissue perfusion, measured by laser Doppler velocimetry and laser speckle contrast imaging, approaching a minimum after the injection of 10 μg/ml. Similar tissue response was observed with diffuse reflectance spectroscopy. The time from the injection of epinephrine (10 μg/ml) to the stabilization of hypoperfusion was 75 seconds. After administration of 10 μg/ml epinephrine, about 20% of the blood perfusion remained, supporting the use of epinephrine in eyelid flaps with a narrow pedicle.
Conclusions: 10 μg/ml epinephrine appears to be adequate for vasoconstriction before oculoplastic surgery. Incisions need only be delayed for about 1 minute. Extended-wavelength diffuse reflectance spectroscopy appears to be a promising technique for monitoring the tissue response following changes in blood perfusion in plastic surgery reconstructions. However, more rigorous validation of the technique is required before it can be implemented in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/IOP.0000000000000883 | DOI Listing |
Alzheimers Dement
December 2024
Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA.
Background: Diffusion magnetic resonance imaging (dMRI) permits characterizing differences in white matter microstructure associated with amnestic mild cognitive impairment (aMCI) and Alzheimer's dementia (AD). However, most dMRI measures aggregate signals across multiple axonal fiber populations with varying spatial orientations, which limits the sensitivity and specificity of clinical diagnosis. To overcome this shortcoming, we estimated fiber density (FD) measures, independently from crossing fiber populations, and extracellular cerebral spinal fluid (CSF).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Research Center of Neurology, Moscow, Russian Federation.
Background: Dysfunction of the glymphatic system (GS), a recently discovered brain by-product elimination system, is considered to be one of the pathophysiological mechanisms for common neurodegenerative diseases such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease (PD). In 2017 a new way to assess the GS was proposed - a diffusion tensor images analysis along perivascular spaces (DTI-ALPS). In our work we evaluated the DTI-ALPS index in groups of patients with AD, DLB, PD and in a comparison group of patients with normal pressure hydrocephalus (NPH).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
Background: Peak-width of skeletonized mean diffusivity (PSMD) is an emerging biomarker of cerebral small vessel disease (cSVD)-related vascular contributions to cognitive impairment and dementia (VCID). Higher PSMD values reflect greater white matter microstructural damage, and prior research has related PSMD to sporadic and monogenic forms of cSVD and worse cognitive function. Therefore, we proposed PSMD as a risk stratification biomarker for VCID.
View Article and Find Full Text PDFBackground: Emerging research, underscored by the UK National Institute of Health and Care Excellence and the US National Institutes of Health, suggests that age-related hearing loss (ARHL) is linked to the development of dementias such as Alzheimer's disease (AD). In this study, we aim to investigate the neural correlates of ARHL and cognitive impairments based on the changes in white matter (WM) microstructures in a population of non-demented adults.
Method: 129 participants (94 female) aged between 20-79 years old (Mean = 51.
Background: Alzheimer's disease (AD) is multifactorial, thus multivariate analyses help untangle its effects. We employed multiple contrast MRI to reveal age-related brain changes in populations at risk for AD, due to APOE4 carriage. We assessed volume and microstructure changes using diffusion weighted imaging, and quantitative magnetic susceptibility maps (QSM) reflective primarily of cerebral iron metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!