Genome-Wide Analysis of Chromatin Accessibility in Arabidopsis Infected with Pseudomonas syringae.

Methods Mol Biol

Department of Biology, Texas State University, 601 University Dr., San Marcos, TX, 78748, USA.

Published: February 2018

Changes in chromatin accessibility are an important aspect of the molecular changes that occur in eukaryotic cells responding to stress, and they appear to play a critical role in stress-induced transcriptional activation/reprogramming and epigenetic changes. In plants, pathogen infection has been shown to induce rapid and drastic transcriptional reprogramming; growing evidence suggests that chromatin remodeling plays an essential role in this phenomenon. The recent development of genomic tools to assess chromatin accessibility presents a significant opportunity to investigate the relationship between chromatin dynamicity and gene expression. In this protocol, we have adopted a popular chromatin accessibility assay, DNase-seq, to measure chromatin accessibility in Arabidopsis infected with the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). DNase-seq provides information on chromatin accessibility through the sequencing of DNA fragments generated by DNase I digestion of open chromatin, followed by mapping these sequences on a reference genome. Of the two popular DNase-seq approaches, we based our method on the Stamatoyannopoulos protocol, which involves two DNase cleavages rather than a single cleavage, followed by size fractionation. Please note that this two-cleavage approach is widely accepted and has been used extensively by ENCODE (Encyclopedia of DNA Elements) project, a public research consortium investigating cis- and trans-elements in the transcriptional regulation in animal cells. To enhance the quality of the chromatin accessibility assay, we modified this protocol by including two centrifugation steps for nuclear enrichment and size fractionation and an extra washing step for removal of chloroplasts and Pst. The outcomes obtained by this approach are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6859-6_22DOI Listing

Publication Analysis

Top Keywords

chromatin accessibility
28
chromatin
10
accessibility arabidopsis
8
arabidopsis infected
8
pseudomonas syringae
8
accessibility assay
8
size fractionation
8
accessibility
7
genome-wide analysis
4
analysis chromatin
4

Similar Publications

ETV7 limits the antiviral and antitumor efficacy of CD8 T cells by diverting their fate toward exhaustion.

Nat Cancer

January 2025

State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.

Terminal exhaustion is a critical barrier to antitumor immunity. By integrating and analyzing single-cell RNA-sequencing and single-cell assay for transposase-accessible chromatin with sequencing data, we found that ETS variant 7 (ETV7) is indispensable for determining CD8 T cell fate in tumors. ETV7 introduction drives T cell differentiation from memory to terminal exhaustion, limiting antiviral and antitumor efficacy in male mice.

View Article and Find Full Text PDF

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.

View Article and Find Full Text PDF

Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells.

View Article and Find Full Text PDF

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!