The correlation of in vitro inhibition of cathepsin K (CatK) activity and in vivo suppression of collagen I biomarkers was examined with three selective CatK inhibitors to explore the potential translatability from animal species to human. These inhibitors exhibited good in vitro potencies toward recombinant CatK enzymes across species, with IC values ranging from 0.20 to 6.1 nM. In vivo studies were conducted in animal species following multiple-day dosing of the CatK inhibitors to achieve steady-state plasma drug concentration-time profiles. Measurement of urinary bone resorption biomarkers (cross-linked N-terminal telopeptide and helical peptide of type I collagen) revealed drug concentration-dependent suppression of biomarkers, with EC values estimated to be 12 to 160 nM. Marked improvement in the correlation between in vitro and in vivo CatK activities was observed with the application of unbound (free) fraction in plasma, consistent with the conditions stipulated by the free-drug hypothesis. These results indicate that the in vitro-in vivo translation of CatK inhibition observed in animal species can translate to humans when the unbound fraction of the inhibitor is considered. Interestingly, residual levels of urinary bone resorption marker were detected as the suppression reached saturation (at an average of 82% inhibition), an apparent phenomenon observed regardless of the species, biomarker, or compound examined. Since cathepsin enzymes other than CatK were reported to catalyze cleavage of collagen I, it is hypothesized that CatK-mediated degradation of collagen I in bone represents ~82% of overall collagen I turnover in the body.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-017-1356-5DOI Listing

Publication Analysis

Top Keywords

animal species
16
vitro-in vivo
8
vivo translation
8
species human
8
free-drug hypothesis
8
correlation vitro
8
catk inhibitors
8
urinary bone
8
bone resorption
8
catk
7

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

Background: Vaccination of farmed salmonids has been an integral part of preventing infectious diseases in Norway's aquaculture industry. In Norway, vaccine usage is regulated by the government. There is a need to monitor vaccine usage for both regulatory and research purposes, at local and national scales.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

We describe a novel Malassezia species named Malassezia polysorbatinonusus, isolated from a Japanese patient with seborrheic dermatitis. The internal transcribed spacer (ITS) region of the isolate (LSEM 4845) were only 94.7% identical to those of M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!