Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals.

Front Hum Neurosci

Facultad de Informática, Ciencias de la Comunicación y Técnicas Especiales, Universidad de Morón Buenos Aires, Argentina.

Published: February 2017

Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5-3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292439PMC
http://dx.doi.org/10.3389/fnhum.2017.00028DOI Listing

Publication Analysis

Top Keywords

brain connectivity
16
profoundly deaf
12
deaf individuals
8
deaf
6
training
5
brain
5
vibrotactile
4
vibrotactile discrimination
4
discrimination training
4
training brain
4

Similar Publications

From Pregnancy to Postpartum: The Dynamic Reorganization of the Maternal Brain.

Neurosci Insights

January 2025

Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.

The postpartum period is marked by radical changes in the maternal brain. Seeking to explore the mechanisms that underlie these changes, this article focuses on the relevant hormonal, inflammatory, and behavioral factors. Longitudinal imaging studies have shed valuable light on both short- and long-term alterations in postpartum brain structure and connectivity, particularly in the regions that play key roles in emotion regulation and stress response.

View Article and Find Full Text PDF

Background: COVID-19 has led to reports of fatigue and sleep problems. Brain function changes underlying sleep problems (SP) post-COVID-19 are unclear.

Purpose: This study investigated SP-related brain functional connectivity (FC) alterations.

View Article and Find Full Text PDF

Background: Cognitive impairment (CI) is a condition in which an individual experiences noticeable impairment in thinking abilities. Long-term exposure to aluminum (Al) can cause CI. This study aimed to determine the relationship between CI and MRI-related changes in postroom workers exposed to Al.

View Article and Find Full Text PDF

Background: Current multimodal neuroimaging plays a critical role in studying clinical conditions such as cardiovascular disease, major depression, and other disorders related to chronic stress. These conditions involve the brainstem-hypothalamic network, specifically the locus coeruleus (LC), dorsal vagal complex (DVC), and paraventricular nucleus (PVN) of the hypothalamus, collectively referred to as the "DVC-LC-PVN circuitry." This circuitry is strongly associated with the norepinephrine (NE) and epinephrine (E) neurotransmitter systems, which are implicated in the regulation of key autonomic functions, such as cardiovascular and respiratory control, stress response, and cognitive and emotional behaviors.

View Article and Find Full Text PDF

Bladder dysfunction is a common clinical problem in stroke patients and a strong prognostic factor of disability and exerts an enormous impact on health and economy. The aim of this narrative review was tο examine the pathophysiological mechanisms of lower urinary tract symptoms after stroke, as well as the relevant clinical anatomy. Normal micturition is achieved through complex coordination between brain regions, spinal cord, and peripheral nerves, and anatomic brain connectivity is crucial to lower urinary tract physiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!