Thyroid is a small gland situated at the anterior side of the neck and one of the largest glands of the endocrine system. The abrupt cell growth or malignancy in the thyroid gland may cause thyroid cancer. Ultrasound images distinctly represent benign and malignant lesions, but accuracy may be poor due to subjective interpretation. Computer Aided Diagnosis (CAD) can minimize the errors created due to subjective interpretation and assists to make fast accurate diagnosis. In this work, fusion of Spatial Gray Level Dependence Features (SGLDF) and fractal textures are used to decipher the intrinsic structure of benign and malignant thyroid lesions. These features are subjected to graph based Marginal Fisher Analysis (MFA) to reduce the number of features. The reduced features are subjected to various ranking methods and classifiers. We have achieved an average accuracy, sensitivity and specificity of 97.52%, 90.32% and 98.57% respectively using Support Vector Machine (SVM) classifier. The achieved maximum Area Under Curve (AUC) is 0.9445. Finally, Thyroid Clinical Risk Index (TCRI) a single number is developed using two MFA features to discriminate the two classes. This prototype system is ready to be tested with huge diverse database.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2017.02.003DOI Listing

Publication Analysis

Top Keywords

fusion spatial
8
spatial gray
8
gray level
8
thyroid lesions
8
benign malignant
8
subjective interpretation
8
features subjected
8
features
6
thyroid
6
level dependency
4

Similar Publications

BMA-Net: A 3D bidirectional multi-scale feature aggregation network for prostate region segmentation.

Comput Methods Programs Biomed

January 2025

Guizhou Province International Science and Technology Cooperation Base for Precision Imaging Diagnosis and Treatment, Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Department of Radiology, Guizhou Provincial People's Hospital, Guizhou 550002, China. Electronic address:

Background And Objective: Accurate segmentation of the prostate region in magnetic resonance imaging (MRI) is crucial for prostate-related diagnoses. Recent studies have incorporated Transformers into prostate region segmentation to better capture long-range global feature representations. However, due to the computational complexity of Transformers, these studies have been limited to processing single slices.

View Article and Find Full Text PDF

Falling is an emergency situation that can result in serious injury or even death, especially in the absence of immediate assistance. Therefore, developing a model that can accurately and promptly detect falls is crucial for enhancing quality of life and safety. In the field of object detection, while YOLOv8 has recently made notable strides in detection accuracy and speed, it still faces challenges in detecting falls due to variations in lighting, occlusions, and complex human postures.

View Article and Find Full Text PDF

VcaNet: Vision Transformer with fusion channel and spatial attention module for 3D brain tumor segmentation.

Comput Biol Med

January 2025

College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Institute of Optoelectronics, Jinhua, 321004, China. Electronic address:

Accurate segmentation of brain tumors from MRI scans is a critical task in medical image analysis, yet it remains challenging due to the complex and variable nature of tumor shapes and sizes. Traditional convolutional neural networks (CNNs), while effective for local feature extraction, struggle to capture long-range dependencies crucial for 3D medical image analysis. To address these limitations, this paper presents VcaNet, a novel architecture that integrates a Vision Transformer (ViT) with a fusion channel and spatial attention module (CBAM), aimed at enhancing 3D brain tumor segmentation.

View Article and Find Full Text PDF

Many population surveys do not provide information on respondents' residential addresses, instead offering coarse geographies like zip code or higher aggregations. However, fine resolution geography can be beneficial for characterizing neighbourhoods, especially for relatively rare populations such as immigrants. One way to obtain such information is to link survey records to records in auxiliary databases that include residential addresses by matching on variables common to both files.

View Article and Find Full Text PDF

Left ventricular systolic dysfunction (LVSD) and its severity are correlated with the prognosis of cardiovascular diseases. Early detection and monitoring of LVSD are of utmost importance. Left ventricular ejection fraction (LVEF) is an essential indicator for evaluating left ventricular function in clinical practice, the current echocardiography-based evaluation method is not avaliable in primary care and difficult to achieve real-time monitoring capabilities for cardiac dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!