AI Article Synopsis

Article Abstract

Despite recent progress, saccharification of lignocellulosic biomass is still a major cost driver in biorefining. In this study, we present the development of minimal enzyme cocktails for hydrolysis of Norway spruce and sugarcane bagasse, which were pretreated using the so-called BALI™ process, which is based on sulfite pulping technology. Minimal enzyme cocktails were composed using several glycoside hydrolases purified from the industrially relevant filamentous fungus Trichoderma reesei and a purified commercial β-glucosidase from Aspergillus niger. The contribution of in-house expressed lytic polysaccharide monooxygenases (LPMOs) was also tested, since oxidative cleavage of cellulose by such LPMOs is known to be beneficial for conversion efficiency. We show that the optimized cocktails permit efficient saccharification at reasonable enzyme loadings and that the effect of the LPMOs is substrate-dependent. Using a cocktail comprising only four enzymes, glucan conversion for Norway spruce reached >80% at enzyme loadings of 8mg/g glucan, whereas almost 100% conversion was achieved at 16mg/g.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2017.02.009DOI Listing

Publication Analysis

Top Keywords

minimal enzyme
12
enzyme cocktails
12
development minimal
8
cocktails hydrolysis
8
lignocellulosic biomass
8
norway spruce
8
enzyme loadings
8
enzyme
5
cocktails
4
hydrolysis sulfite-pulped
4

Similar Publications

Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering.

Biotechnol Adv

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:

Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Antibiotic-free responsive biomaterials for specific and targeted Helicobacter pylori eradication.

J Control Release

January 2025

Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China. Electronic address:

Gastric cancer is highly correlated with Helicobacter pylori (H. pylori) infection. Approximately 50 % of the population worldwide is infected with H.

View Article and Find Full Text PDF

Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM.

View Article and Find Full Text PDF

A Noncatalytic Cysteine Residue Modulates Cobalamin Reactivity in the Human B Processing Enzyme CblC.

Biochemistry

January 2025

Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.

Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.

View Article and Find Full Text PDF

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!