Background: Substance P (SP) is linked to itch and inflammation through activation of receptors on mast cells and sensory neurons. There is increasing evidence that SP functions through Mas-related G protein-coupled receptors (Mrgprs) in addition to its conventional receptor, neurokinin-1.
Objective: Because Mrgprs mediate some aspects of inflammation that had been considered mediated by neurokinin-1 receptor (NK-1R), we sought to determine whether itch induced by SP can also be mediated by Mrgprs.
Methods: Genetic and pharmacologic approaches were used to evaluate the contribution of Mrgprs to SP-induced scratching behavior and activation of cultured dorsal root ganglion neurons from mice.
Results: SP-induced scratching behavior and activation of cultured dorsal root ganglion neurons was dependent on Mrgprs rather than NK-1R.
Conclusion: We deduce that SP activates MrgprA1 on sensory neurons rather than NK-1R to induce itch.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546940 | PMC |
http://dx.doi.org/10.1016/j.jaci.2016.12.980 | DOI Listing |
Sheng Li Xue Bao
December 2024
College of Life Sciences, Fujian Normal University; Fujian Key Laboratory of Developmental and Neuro Biology, Fuzhou 350117, China.
Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Introduction: A subtype of human mast cells (MCs) found in the skin and to a lesser extent in the lung and gut express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR-X2 (MRGPRX2, mouse counterpart MrgprB2). In addition to drug-induced pseudoallergy and cutaneous disorders, MrgprB2 contributes to ulcerative colitis, IgE-mediated lung inflammation and systemic anaphylaxis. Interestingly, most agonists activate MRGPRX2 with higher potency than MrgprB2.
View Article and Find Full Text PDFMol Cell Proteomics
December 2024
Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:
Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with comprehensively constructing and expressing highly complex venom and venom-like molecule libraries have precluded their therapeutic evaluation via high throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and "metavenoms".
View Article and Find Full Text PDFBiol Pharm Bull
December 2024
Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University.
Cutaneous colonization with Staphylococcus aureus (SA) is frequently observed in patients with atopic dermatitis. SA produces a wide variety of bacterial toxins, among which δ-toxin was found to induce degranulation of mast cells. Degranulation of mast cells could enhance bacterial clearance and protection from future SA infection but lead to exacerbation of atopic dermatitis.
View Article and Find Full Text PDFSci Transl Med
December 2024
Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Activation of dermal mast cells through the Mas-related G protein-coupled receptor B2 receptor (MrgprB2 in mice and MrgprX2 in humans) is a key component of numerous inflammatory skin diseases, including dermatitis and rosacea. Sensory neurons actively suppress mast cell activation through the regulated release of glutamate, resulting in reduced expression of as well as genes associated with proteins found in mast cell granules. To determine whether exogenous glutamate receptor agonism could suppress mast cell function, we determined that mast cells have relatively selective expression of the glutamate receptor ionotropic, kainate 2 (GluK2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!