Enzymes of central carbon metabolism are essential mediators of Mycobacterium tuberculosis (Mtb) physiology and pathogenicity, but are often perceived to lack sufficient species selectivity to be pursued as potential drug targets. Fumarase (Fum) is an enzyme of the canonical tricarboxylic acid cycle and is dispensable in many organisms. Transposon mutagenesis studies in Mtb, however, indicate that Fum is required for optimal growth. Here, we report the generation and characterization of a genetically engineered Mtb strain in which Fum expression is conditionally regulated. This revealed that Fum deficiency is bactericidal in vitro and during both the acute and chronic phases of mouse infection. This essentiality is linked to marked accumulations of fumarate resulting in protein and metabolite succination, a covalent modification of cysteine thiol residues. These results identify Mtb Fum as a potentially species-specific drug target whose inactivation may kill Mtb through a covalently irreversible form of metabolic toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357164PMC
http://dx.doi.org/10.1016/j.chembiol.2017.01.005DOI Listing

Publication Analysis

Top Keywords

protein metabolite
8
metabolite succination
8
mycobacterium tuberculosis
8
mtb
5
fum
5
fumarase deficiency
4
deficiency protein
4
succination intoxicates
4
intoxicates mycobacterium
4
tuberculosis enzymes
4

Similar Publications

N-acetyl-tryptophan in Acute Kidney Injury after Cardiac Surgery.

J Am Soc Nephrol

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.

Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.

View Article and Find Full Text PDF

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

Eclipta prostrata belongs to the Asteraceae family. The plant contains bioactive compounds like wedelolactone (WDL) and demethylwedelolactone (DW). Its transcriptomic information engaged with secondary metabolite biosynthesis is not available.

View Article and Find Full Text PDF

Integration of resistance indicators, metabolomes, and transcriptomes to elucidate that there is a positive correlation between disease susceptibility and cold tolerance in tea plants. The flavonoid pathway was found to be the major metabolic and transcriptional enrichment pathway. A key domain NB-ARC was identified through joint analysis, along with analysis of key domains within the NB-ARC protein.

View Article and Find Full Text PDF

Background: Cadaverine and hydrocinnamic acid are frequent metabolites in inflamed periodontal areas. Their role as a metabolite for plant growth inhibition has been established, but their relevance in humans has yet to be determined. Moreover, Vascular endothelial growth factor (VGEF) is a consistent growth factor in neo-angiogenesis in periodontal regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!