Microwave-assisted potassium permanganate modification (MPPM) was used for the flotation separation of polycarbonate (PC) from polyvinyl chloride (PVC) and polymethylmethacrylate (PMMA) waste plastics. The separation process was optimized by investigating the potassium permanganate concentration, treatment time, flotation time and frother concentration. MPPM selectively reduced the flotation recovery of PC. The optimum conditions were determined to be: potassium permanganate concentration, 2 mM/L; treatment time, 1 min; frother concentration, 17.57 g/L; and flotation time, 1 min. PC was efficiently separated from PVC and PMMA under the optimum conditions. The purity of the separated PC was 97.71%. The purity and recovery of PVC and PMMA were both >95%. The modification mechanism was investigated using the water contact angles, Fourier transform infrared spectrometry and scanning electron microscopy. This work provides technical insights into the industrial recycling of waste plastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0734242X16682078 | DOI Listing |
J Environ Manage
January 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China. Electronic address:
Plastic waste's dual characteristics of "resource" and "pollution" led to the prevalence of trade. The Global Plastic Waste Trade Network (GPWTN) is heterogeneous, and its structure is susceptible to the influence of key countries within it. However, there is a shortage of research on the key countries and trade drivers influencing GPWTN evolution.
View Article and Find Full Text PDFEnviron Res
January 2025
Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Shollinganallur, Chennai, India.
Municipal waste classification is significant for effective recycling and waste management processes that involve the classification of diverse municipal waste materials such as paper, glass, plastic, and organic matter using diverse techniques. Yet, this municipal waste classification process faces several challenges, such as high computational complexity, more time consumption, and high variability in the appearance of waste caused by variations in color, type, and degradation level, which makes an inaccurate waste classification process. To overcome these challenges, this research proposes a novel Channel and Spatial Attention-Based Multiblock Convolutional Network for accurately classifying municipal waste that utilizes a unique attention mechanism for enhancing feature learning and waste classification accuracy.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
Plastics are widely produced due to their stability and ease of manufacturing, but many of them quickly become a waste, breaking down into microplastics and nanoplastics. While methods for the identification and characterization of plastic particles are well consolidated, the small size of nanoplastics presents challenges for their detection and analysis. Furthermore, due to the difficulty of identifying nanoplastics, analytical studies concerning their effect on cells and a comprehensive spectroscopic characterization are still lacking.
View Article and Find Full Text PDFMolecules
January 2025
Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.
Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!