The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice.

Genes (Basel)

Centre for Ageing and Vitality, Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.

Published: February 2017

Base excision repair (BER) may become less effective with ageing resulting in accumulation of DNA lesions, genome instability and altered gene expression that contribute to age-related degenerative diseases. The brain is particularly vulnerable to the accumulation of DNA lesions; hence, proper functioning of DNA repair mechanisms is important for neuronal survival. Although the mechanism of age-related decline in DNA repair capacity is unknown, growing evidence suggests that epigenetic events (e.g., DNA methylation) contribute to the ageing process and may be functionally important through the regulation of the expression of DNA repair genes. We hypothesize that epigenetic mechanisms are involved in mediating the age-related decline in BER in the brain. Brains from male mice were isolated at 3-32 months of age. Pyrosequencing analyses revealed significantly increased methylation with ageing, which correlated inversely with expression. The reduced expression correlated with enhanced expression of methyl-CpG binding protein 2 and ten-eleven translocation enzyme 2. A significant inverse correlation between methylation at CpG-site2 and expression was also observed. BER activity was significantly reduced and associated with increased 8-oxo-7,8-dihydro-2'-deoxyguanosine levels. These data indicate that and expression can be epigenetically regulated, which may mediate the effects of ageing on DNA repair in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333064PMC
http://dx.doi.org/10.3390/genes8020075DOI Listing

Publication Analysis

Top Keywords

dna repair
20
dna
9
dna methylation
8
accumulation dna
8
dna lesions
8
age-related decline
8
expression
7
repair
6
ageing
5
ageing brain
4

Similar Publications

Kaposi Sarcoma (KS) is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus (KSHV/HHV-8). People with immunodeficiencies, including HIV, are at increased risk for developing KS, but our understanding of the contributions of the cellular genome to KS pathogenesis remains limited. To determine if there are cellular genetic alterations in KS that might provide biological or therapeutic insights, we performed whole exome sequencing on 78 KS tumors and matched normal control skin from 59 adults with KS (46 with HIV-associated KS and 13 with HIV-negative KS) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda.

View Article and Find Full Text PDF

SN1-type alkylating reagents generate O6-methylguanine (meG) lesions that activate the mismatch repair (MMR) response. Since post-replicative MMR specifically targets the nascent strand, meG on the template strand is refractory to rectification by MMR and, therefore, can induce non-productive MMR reactions. The cycling of futile MMR attempts is proposed to cause DNA double-strand breaks in the subsequent S phase, leading to ATR-checkpoint-mediated G2 arrest and apoptosis.

View Article and Find Full Text PDF

Lynch syndrome is the most common hereditary cancer predisposition, accounting for 1-5% of colorectal cancer cases, and is driven by germline mutations in DNA mismatch repair genes. Despite established diagnostic criteria, such as the Amsterdam guidelines, Lynch syndrome remains largely underdiagnosed. To address this gap, universal tumour screening has been introduced for all newly diagnosed cases of colorectal cancer and endometrial cancer, significantly improving early detection.

View Article and Find Full Text PDF

Increased cardiac macrophages in -deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities.

Front Genet

January 2025

Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!