Mutations in laminin α2-subunit (Lmα2, encoded by LAMA2) are linked to approximately 30% of congenital muscular dystrophy cases. Mice with a homozygous mutation in Lama2 (dy2J mice) express a nonpolymerizing form of laminin-211 (Lm211) and are a model for ambulatory-type Lmα2-deficient muscular dystrophy. Here, we developed transgenic dy2J mice with muscle-specific expression of αLNNd, a laminin/nidogen chimeric protein that provides a missing polymerization domain. Muscle-specific expression of αLNNd in dy2J mice resulted in strong amelioration of the dystrophic phenotype, manifested by the prevention of fibrosis and restoration of forelimb grip strength. αLNNd also restored myofiber shape, size, and numbers to control levels in dy2J mice. Laminin immunostaining and quantitation of tissue extractions revealed increased Lm211 expression in αLNNd-transgenic dy2J mice. In cultured myotubes, we determined that αLNNd expression increased myotube surface accumulation of polymerization-deficient recombinant laminins, with retention of collagen IV, reiterating the basement membrane (BM) changes observed in vivo. Laminin LN domain mutations linked to several of the Lmα2-deficient muscular dystrophies are predicted to compromise polymerization. The data herein support the hypothesis that engineered expression of αLNNd can overcome polymerization deficits to increase laminin, stabilize BM structure, and substantially ameliorate muscular dystrophy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330723 | PMC |
http://dx.doi.org/10.1172/JCI90854 | DOI Listing |
LAMA2 deficiency, resulting from a defective or absent laminin α2 subunit, is a common cause of congenital muscular dystrophy. It is characterized by muscle weakness from myofiber degeneration and neuropathy from Schwann cell amyelination. Previously it was shown that transgenic muscle-specific expression of αLNNd, a laminin γ1-binding linker protein that enables polymerization in defective laminins, selectively ameliorates the muscle abnormality in mouse disease models.
View Article and Find Full Text PDFMethods Mol Biol
December 2020
Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
The study of the population of muscle satellite cells (SC) is important to understand muscle regeneration and its involvement in the different dystrophic processes. We studied two dystrophic mouse models, Large and Lama2/J, that show an intense and very similar pattern of muscle degeneration, but with differences in the expression of genes involved in the regeneration cascade. They are, therefore, interesting models to study possible differences in the mechanism of activation and action of satellite cells in the dystrophic muscle.
View Article and Find Full Text PDFHum Mol Genet
October 2019
Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.
Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology.
View Article and Find Full Text PDFPLoS One
November 2018
Department of Human Genetics Leiden University Medical Centre, Leiden, The Netherlands.
Merosin deficient congenital muscular dystrophy 1A (MDC1A) is a very rare autosomal recessive disorder caused by mutations in the LAMA2 gene leading to severe and progressive muscle weakness and atrophy. Although over 350 causative mutations have been identified for MDC1A, no treatment is yet available. There are many therapeutic approaches in development, but the lack of natural history data of the mouse model and standardized outcome measures makes it difficult to transit these pre-clinical findings to clinical trials.
View Article and Find Full Text PDFHum Mol Genet
June 2018
Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.
Most Mendelian disorders, including neuromuscular disorders, display extensive clinical heterogeneity that cannot be solely explained by primary genetic mutations. This phenotypic variability is largely attributed to the presence of disease modifiers, which can exacerbate or lessen the severity and progression of the disease. LAMA2-deficient congenital muscular dystrophy (LAMA2-CMD) is a fatal degenerative muscle disease resulting from mutations in the LAMA2 gene encoding Laminin-α2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!