Coumarin-Based Thermally Activated Delayed Fluorescence Emitters with High External Quantum Efficiency and Low Efficiency Roll-off in the Devices.

ACS Appl Mater Interfaces

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

Published: March 2017

Thermally activated delayed fluorescence (TADF) emitters have attracted much interest for their great applications in organic light-emitting diodes (OLEDs), but the TADF OLEDs are limited by large efficiency roll-offs. In this study, we report two coumarin-based TADF emitters, 3-methyl-6-(10H-phenoxazin-10-yl)-1H-isochromen-1-one (PHzMCO) and 9-(10H-phenoxazin-10-yl)-6H-benzo[c]chromen-6-one (PHzBCO), with relatively high photoluminescence quantum yields (PLQYs) and extremely small singlet-triplet splittings. OLEDs using these two TADF compounds as the emitters respectively demonstrate high external quantum efficiencies of 17.8% for PHzMCO and 19.6% for PHzBCO, which are the highest among the reported coumarin-derivative-based OLEDs. More importantly, these devices based on PHzMCO and PHzBCO remained 10.3% and 12.9% at 10000 cd m, respectively, showing relatively low efficiency roll-offs at high brightness. These results reveal that the TADF emitters with high PLQYs can effectively reduce the efficiency roll-off in the devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b15816DOI Listing

Publication Analysis

Top Keywords

tadf emitters
12
thermally activated
8
activated delayed
8
delayed fluorescence
8
emitters high
8
high external
8
external quantum
8
low efficiency
8
efficiency roll-off
8
roll-off devices
8

Similar Publications

High-Performance Circular Polarization Multiple-Resonance TADF Molecules with Enhanced Long-Range Charge Transfer Based on Chiral Paracyclophane.

J Phys Chem Lett

December 2024

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.

Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.

View Article and Find Full Text PDF

To experimentally investigate the impact of macrocyclic structures on the nonradiative decay rate constants () of thermally activated delayed fluorescence (TADF), a macrocyclic molecule L-ring and its analogue NL-ring were designed and synthesized. The photophysical measurements reveal their TADF characteristics, and the of the L-ring (4.19 × 10 s) is slower than that of the NL-ring (1.

View Article and Find Full Text PDF

The exploration of circularly polarized luminescence is important for advancing display and lighting technologies. Herein, by utilizing isomeric molecular engineering, a novel series of chiral molecules are designed to exploit both thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) mechanisms for efficient luminescence. The cooperation of a small singlet-triplet energy gap, moderate spin-orbital coupling (SOC), and large oscillator strength enables efficient TADF emission, with photoluminescence quantum yields exceeding 90%.

View Article and Find Full Text PDF

Organic thermally activated delayed fluorescence (TADF) materials, known for their long-lived emission properties, are highly sought after for background-free imaging of selective analytes in time-resolved modes. However, their practical application faces significant challenges, including the air sensitivity of triplet states, lack of organelle specificity, and the absence of precise analyte recognition centres. These limitations hinder their effectiveness in detecting key cancer biomarkers such as nitroreductase (NTR).

View Article and Find Full Text PDF

Efficiency Boost in Through Space Charge Transfer Emitters: Insights from Spiro Lateral Rocking Confinement.

Adv Mater

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.

Intramolecular through-space charge-transfer (TSCT) excited states have emerged as promising candidates for thermally activated delayed fluorescence (TADF) emitters. This study addresses the challenges in tuning excited state dynamics through conformational engineering, which significantly impacts exciton utilization. An effective strategy is presented to enhance the performance of TSCT-TADF molecules by restricting the lateral rocking of the spiro unit via immobilizing groups, which indirectly adjusts the conformations of the donor and acceptor subunits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!