Sodium-ion batteries (SIBs) have shown extensive prospects as alternative rechargeable batteries in large-scale energy storage systems, because of the abundance and low cost of sodium. The development of high-performance cathode and anode materials is a big challenge for SIBs. As is well known, TiNbO (TNO) exhibits a high capacity of ∼250 mAh g with excellent capacity retention as a Li-insertion anode for lithium-ion batteries, but it has rarely been discussed as an anode for SIBs. Here, we demonstrate ball-milled TiNbO (BM-TNO) as an SIB anode, which provides an average voltage of ∼0.6 V and a reversible capacity of ∼180 mAh g at a current density of 15 mA g, and presents excellent cyclability with 95% capacity retention after 500 cycles at 500 mA g. A possible Na storage mechanism in BM-TNO is also proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b15887 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran. Electronic address:
Acrylamide has high hydrophilic properties due to the presence of hydrophilic amide functional groups and is frequently used to synthesize superabsorbents. However, the toxic and carcinogenic properties of acrylamide have caused environmental concerns. The main goal of this paper is the synthesis of superabsorbent with high water absorption from biodegradable and biocompatible cellulose polymer containing amide groups in the backbone of it instead of grafting harmful acrylamide monomers to cellulose.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130024, PR China. Electronic address:
Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.
View Article and Find Full Text PDFNature
January 2025
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.
Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)TeI, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl on its surface.
View Article and Find Full Text PDFACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.
The widespread application of anode-free lithium metal batteries (AFLMBs) is hindered by the severe dendrite growth and side reactions due to the poor reversibility of Li plating/stripping. Herein, our study introduces an ultrathin interphase layer of covalent cage 3 (CC3) for highly reversible AFLMBs. The subnano triangular windows in CC3 serve as a Li sieve to accelerate Li desolvation and transport kinetics, inhibit electrolyte decomposition, and form LiF- and LiN-rich solid-electrolyte interphases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!