A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In Situ Bioorthogonal Metabolic Labeling for Fluorescence Imaging of Virus Infection In Vivo. | LitMetric

In Situ Bioorthogonal Metabolic Labeling for Fluorescence Imaging of Virus Infection In Vivo.

Small

Guangdong Key Laboratory of Nanomedicine, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.

Published: May 2017

Optical fluorescence imaging is an important strategy to explore the mechanism of virus-host interaction. However, current fluorescent tag labeling strategies often dampen viral infectivity. The present study explores an in situ fluorescent labeling strategy in order to preserve viral infectivity and precisely monitor viral infection in vivo. In contrast to pre-labeling strategy, mice are first intranasally infected with azide-modified H5N1 pseudotype virus (N -H5N1p), followed by injection of dibenzocyclooctyl (DBCO)-functionalized fluorescence 6 h later. The results show that DBCO dye directly conjugated to N -H5N1p in lung tissues through in vivo bioorthogonal chemistry with high specificity and efficacy. More remarkably, in situ labeling rather than conventional prelabeling strategy effectively preserves viral infectivity and immunogenicity both in vitro and in vivo. Hence, in situ bioorthogonal viral labeling is a promising and reliable strategy for imaging and tracking viral infection in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201604036DOI Listing

Publication Analysis

Top Keywords

infection vivo
12
viral infectivity
12
situ bioorthogonal
8
fluorescence imaging
8
viral infection
8
viral
6
labeling
5
vivo
5
strategy
5
situ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!