Trapping of ivermectin by a pentameric ligand-gated ion channel upon open-to-closed isomerization.

Sci Rep

Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.

Published: February 2017

Ivermectin (IVM) is a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. By activating invertebrate pentameric glutamate-gated chloride channels (GluCl receptors; GluClRs), IVM induces sustained chloride influx and long-lasting membrane hyperpolarization that inhibit neural excitation in nematodes. Although IVM activates the C. elegans heteromeric GluClα/β receptor, it cannot activate a homomeric receptor composed of the C. elegans GluClβ subunits. To understand this incapability, we generated a homopentameric α7-GluClβ chimeric receptor that consists of an extracellular ligand-binding domain of an α7 nicotinic acetylcholine receptor known to be potentiated by IVM, and a chloride-selective channel domain assembled from GluClβ subunits. Application of IVM prior to acetylcholine inhibited the responses of the chimeric α7-GluClβR. Adding IVM to activated α7-GluClβRs, considerably accelerated the decline of ACh-elicited currents and stabilized the receptors in a non-conducting state. Determination of IVM association and dissociation rate constants and recovery experiments suggest that, following initial IVM binding to open α7-GluClβRs, the drug induces a conformational change and locks the ion channel in a closed state for a long duration. We further found that IVM also inhibits the activation by glutamate of a homomeric receptor assembled from the C. elegans full-length GluClβ subunits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5317004PMC
http://dx.doi.org/10.1038/srep42481DOI Listing

Publication Analysis

Top Keywords

gluclβ subunits
12
ivm
9
ion channel
8
homomeric receptor
8
receptor
5
trapping ivermectin
4
ivermectin pentameric
4
pentameric ligand-gated
4
ligand-gated ion
4
channel open-to-closed
4

Similar Publications

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Kir5.1 encoded by is an inwardly-rectifying K channel-subunit and it possibly interacts with Kir4.2-subunit encoded by for assembling a Kir4.

View Article and Find Full Text PDF

Octahedral small virus-like particles of dengue virus type 2.

J Virol

December 2024

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.

Unlabelled: Flavivirus envelope (E) and precursor M (prM) proteins, when ectopically expressed, assemble into empty, virus-like particles (VLPs). Cleavage of prM to M and loss of the pr fragment converts the VLPs from immature to mature particles, mimicking a similar maturation of authentic virions. Most of the VLPs obtained by prM-E expression are smaller than virions; early, low-resolution cryo-EM studies suggested a simple, 60-subunit, icosahedral organization.

View Article and Find Full Text PDF

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

In the SWI/SNF chromatin-remodeling complex, the mutually exclusive catalytic ATPase subunits SMARCA2 and SMARCA4 proteins have a synthetic-lethal relationship. Selectively targeting SMARCA2 for degradation is a promising and new therapeutic strategy for human cancers harboring inactivated mutated SMARCA4. In this study, we report the design, synthesis, and biological evaluation of novel SMARCA2/4 ligands and our subsequent design of PROTAC degraders using high-affinity SMARCA ligands and VHL-1 ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!