Versatility of PEEK as a fixed partial denture framework.

J Indian Prosthodont Soc

Department of Prosthodontics, Sri Sai College of Dental Surgery, Hyderabad, Telangana, India.

Published: January 2017

Materials used for fixed partial denture (FPD) frameworks have had properties of excellent strength, durability, and biocompatibility. Some of the materials which have been used till date include alloys, ceramics, and high-performance polymers such as zirconia, Ni-Cr, lithium disilicate, and so on. All these, though excellent, have their advantages and disadvantages. Hence, the search has always been on for a better material. One such material, which has made its foray into dentistry in the recent times, is polyetheretherketone (PEEK). It is a semicrystalline thermoplastic material. PEEK has an excellent chemical resistance and mechanical properties that are retained at high temperatures. The versatility of PEEK as a dental material for FPD framework was evaluated in this case report.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5308070PMC
http://dx.doi.org/10.4103/0972-4052.197941DOI Listing

Publication Analysis

Top Keywords

versatility peek
8
fixed partial
8
partial denture
8
peek fixed
4
denture framework
4
framework materials
4
materials fixed
4
denture fpd
4
fpd frameworks
4
frameworks properties
4

Similar Publications

Polyetheretherketone (PEEK) has emerged as a revolutionary material in modern dentistry because of its unique combination of mechanical strength, biocompatibility, and versatility. This literature review examines the current applications and future potential of PEEK in various dental disciplines. PEEK's favorable properties, including its low specific weight, high strength-to-weight ratio, and ability to be easily machined, have led to its adoption in prosthetics, implantology, and dental esthetic restorations.

View Article and Find Full Text PDF

Multi-Functional Bio-HJzyme Engineered Polyetheretherketone Implant with Cascade-Amplification Therapeutic Capabilities Toward Intractable Implant-Associated Infections.

Small

December 2024

State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Center for Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.

Intractable implant-associated infections (IAIs) are the primary cause of prosthetic implant failure, particularly in the context of diabetes mellitus. There is an urgent need to design and construct versatile engineered implants integrated with cascade amplification therapeutic modality to significantly improve the treatment of diabetic IAIs. To address this issue, a multi-functional MXene/AgPO@glucose oxidase bio-heterojunction enzyme (M/A@GOx bio-HJzyme) coating is developed, which is decorated with an inert sulfonated polyetheretherketone implant (SP-M/A@G) via hydrothermal treatment and layered deposition.

View Article and Find Full Text PDF

Polyetheretherketone (PEEK), renowned for its exceptional mechanical properties and bio-stability, is considered a promising alternative to traditional metal-based implants. However, the inferior bactericidal activity and the limited angiogenic and osteogenic properties of PEEK remain the three major obstacles to osseointegration . To overcome these obstacles, in this work, a versatile heterostructured nanocoating was conceived and equipped on PEEK.

View Article and Find Full Text PDF

Biomechanical Fatigue Behavior of a Dental Implant Due to Chewing Forces: A Finite Element Analysis.

Materials (Basel)

April 2024

Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Sección de Estudios de Posgrado e Investigación, Unidad Profesional Adolfo López Mateos Zacatenco, Edificio 5, 2do, Piso, Col. Lindavista, Del. Gustavo A. Madero, Ciudad de México C.P. 07320, Mexico.

The use of titanium as a biomaterial for the treatment of dental implants has been successful and has become the most viable and common option. However, in the last three decades, new alternatives have emerged, such as polymers that could replace metallic materials. The aim of this research work is to demonstrate the structural effects caused by the fatigue phenomenon and the comparison with polymeric materials that may be biomechanically viable by reducing the stress shielding effect at the bone-implant interface.

View Article and Find Full Text PDF

Multicomponent reactions offer efficient and environmentally friendly strategies for preparing monoliths suitable for applications in analytical chemistry. In the described study, a multicomponent reaction was utilized for the one-pot miniaturized preparation of a poly(propargyl amine) polymer inside commercial silica-lined PEEK tubing. The reaction involved only small amounts of reagents and was characterized by atom economy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!