Reliability of glutamate and GABA quantification using proton magnetic resonance spectroscopy.

Neurosci Lett

Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States. Electronic address:

Published: March 2017

The consistency and reliability of proton magnetic resonance spectroscopy (H-MRS) assessments of neurotransmitter concentration has not been widely examined over multiple days. The purpose of this study was to determine the reliability of glutamate and GABA measures using a single-voxel H-MRS protocol in healthy men and women. Glutamate and GABA quantitations were obtained from the primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) in 13 healthy individuals across 3 data collection sessions, including a baseline (Visit 1), 2-week (Visit 2), and 2-month time point (Visit 3). Glutamate concentrations were similar across visits in M1 (p=0.72) and the DLPFC (p=0.52). Reliability across days was excellent in M1 (R=0.93), and in the DLPFC (R=0.99). GABA concentrations were similar across visits in M1 (p=0.44) and in the DLPFC (p=0.59). Reliability of GABA concentration across days was excellent in M1 (R=0.93), and in the DLPFC (R=0.97). H-MRS is a reliable method for quantifying glutamate and GABA concentration in M1 and the DLPFC in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2017.02.039DOI Listing

Publication Analysis

Top Keywords

glutamate gaba
16
reliability glutamate
8
proton magnetic
8
magnetic resonance
8
resonance spectroscopy
8
concentrations visits
8
days excellent
8
excellent r=093
8
r=093 dlpfc
8
gaba concentration
8

Similar Publications

The Interaction of Histamine H and Dopamine D Receptors on Hyperkinetic Alterations in Animal Models of Parkinson's Disease.

Pharmaceuticals (Basel)

December 2024

División de Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico.

Parkinson's disease is associated with the loss of more than 40% of dopaminergic neurons in the substantia nigra pars compacta. One of the therapeutic options for restoring striatal dopamine levels is the administration of L-3,4-dihydroxyphenylalanine (L-Dopa). However, Parkinson's disease patients on long-term L-Dopa therapy often experience motor complications, such as dyskinesias.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) has been attributed to health-promoting properties and has received attention from the food industry as an attractive bioactive compound for the development of functional foods. Some lactic acid bacteria (LAB) produce GABA through a glutamate decarboxylase encoded by B and a glutamate/GABA antiporter encoded by C. In this study, we develop a molecular screening method based on a polymerase chain reaction able to detect those genes in different LAB species through the use of novel multispecies primers.

View Article and Find Full Text PDF

: Psychotherapy and antidepressants are the standard treatment for depression during pregnancy or postpartum. However, several new treatments for depression represent major advances and paradigm changes. This commentary highlights some innovative treatment options that are on the horizon.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) is an important neurotransmitter that promotes sleep and reduces anxiety, but its natural synthesis in the body is insufficient, necessitating dietary intake. This study utilized a combination of germination, the addition of active barley powder, and fermentation to enhance GABA content in an enzymatically hydrolyzed highland barley beverage. The samples were divided into five groups: highland barley (HB), germinated highland barley (GB), highland barley supplemented with another high-glutamic-acid decarboxylase-active highland barley powder TB13 (BT), germinated barley supplemented with TB13 (GBT), and germinated barley supplemented with TB13 followed by fermentation (GBTF).

View Article and Find Full Text PDF

Human primary (hpBMEC) and induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (hiBMEC) are interchangeably used in blood-brain barrier models to study neurological diseases and drug delivery. Both hpBMEC and hiBMEC use glutamine as a source of carbon and nitrogen to produce metabolites and build proteins essential to cell function and communication. We used metabolomic, transcriptomic, and computational methods to examine how hpBMEC and hiBMEC metabolize glutamine, which may impact their utility in modeling the blood-brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!