Organic anion transporting polypeptide 1B3 (OATP1B3) is a major influx transporter mediating the hepatic uptake of various endogenous substrates as well as clinically important drugs such as statins and anticancer drugs. However, molecular mechanisms controlling the membrane trafficking of OATP1B3 have been largely unknown. Several reports recently indicated the presence of a distinct, cancer-type OATP1B3 variant lacking the N-terminal 28 amino acids compared to OATP1B3 expressed in non-malignant hepatocytes. Interestingly, the cancer-type OATP1B3 variant is located predominantly in the cytoplasm, implicating the involvement of the N-terminal region of OATP1B3 in its membrane trafficking. In the current study, we set out to experimentally validate the importance of the N-terminal region of OATP1B3 and to identify responsible sequence motif(s) in that region. A number of truncation or point mutants of OATP1B3 were transiently expressed in HEK293T, HCT-8 or MDCK II cells and their expression in cytoplasmic and surface membrane fractions were analyzed by immunoblotting. Our results indicated that the N-terminal sequence of OATP1B3, in particular, at the amino acid positions between 12 and 28, may be indispensable in its membrane trafficking. Moreover, our results using a fusion construct indicated that the first 50 amino acids of OATP1B3 are sufficient for its membrane localization. The importance of the N-terminal region in membranous localization was shared among the other OATP1B subfamily members, OATP1B1 and rat Oatp1b2. Our efforts to identify the responsible amino acid(s) or structure motif(s) in the N-terminal region did not pinpoint individual amino acids or motifs with putative secondary structures. Our current findings however demonstrate that the N-terminal region is important for the membrane localization of the OATP1B subfamily members and should facilitate future investigations of the mechanisms involved in the regulation and membrane trafficking of these important transporter proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2017.02.013 | DOI Listing |
Antiviral Res
December 2024
Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia. Electronic address:
The Phosphoprotein (P protein) of the rabies virus has multiple roles in virus replication. A critical function is to act as a cofactor in genome replication and mRNA production through binding via its N-terminal region to the L protein, the essential enzyme for mRNA and genome synthesis/processing, and via its C-terminal domain (P) to the N protein and viral RNA (N-RNA) ribonucleoprotein complex. The binding site of the P on the N protein is a disordered loop that is expected to be phosphorylated at Ser389.
View Article and Find Full Text PDFVirology
December 2024
Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China. Electronic address:
Late expression factor 3 (LEF3), a multifunctional single-stranded DNA binding protein encoded by baculoviruses, is indispensable for viral DNA replication and plays a pivotal role in viral infection. Our previous quantitative analysis of phosphorylomics revealed that the phosphorylation levels of two serine residues (S8 and S25) located in LEF3 nuclear localization sequence were significantly up-regulated after Bombyx mori nucleopolyhedrovirus (BmNPV) infection, but the underlying mechanism remained unknown. To investigate the impact of phosphorylation on BmNPV infection, site-direct mutagenesis was performed on LEF3 to obtain phosphorylated mimic (S/D) or dephosphorylated mimic (S/A) mutants.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi state, MS, 39762, USA.
The production of lipopolysaccharide (LPS)-free recombinant proteins from culture supernatants is of great interest to biomedical research and industry. Due to the LPS-free cell wall structure and the well-defined secretion factor B (SecB)-dependent secretion pathway, Gram-positive bacteria are a superior alternative to Escherichia coli expression systems. However, the lack of inducible expression systems for high yields has been a bottleneck.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Homeostatic Medicine, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima Bunkyo-ku, Tokyo 113-8510, Japan. Electronic address:
Alpha-1-antitrypsin (AAT), a circulating serine protease inhibitor, is an acute inflammatory response protein with anti-inflammatory functions. The C-terminal peptides of AAT are found in various tissues and have been proposed as putative bioactive peptides with multiple functions, but its mechanism of action remains unclear. We previously reported that a mouse AAT C-terminal peptide of 35 amino acids (mAAT-C) penetrates plasma membrane and associates guanine nucleotide-binding protein subunit alpha 13 (Gα13).
View Article and Find Full Text PDFMetabolites
December 2024
Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia.
Background: Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (; also known as ) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the gene in human muscle physiology, and particularly in athletic populations, remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!