Robotic milking: Feeding strategies and economic returns.

J Dairy Sci

Department of Dairy Science, University of Wisconsin, Madison 53706.

Published: September 2017

Cows in herds equipped with conventional milking parlors follow a structured, consistent, and social milking and feeding routine. Furthermore, in most cases cows in conventional herds receive all their nutrients from a total mixed ration, whereas in herds equipped with robotic or automatic milking systems (AMS) a fraction of their nutrients is provided during milking, mainly as a means to attract cows to the milking system. In this regards, AMS present both a challenge and an opportunity for feeding cows. The main challenge resides in maintaining a minimum and relatively constant milking frequency in AMS. However, milking frequency is dependent on many factors, including the social structure of the herd, the farm layout design, the type of traffic imposed to cows, the type of flooring, the health status of the cow (especially lameness, but also mastitis, metritis, among others), the stage of lactation, the parity, and the type of ration fed at the feed bunk and the concentrate offered in the AMS. Uneven milk frequency has been associated with milk losses and increased risk of mastitis, but most importantly it is a lost opportunity for milking the cow and generating profit. On the other hand, the opportunity from AMS resides in the possibility of milking more frequently and feeding cows more precisely or more closely to their nutrient needs on an individual basis, potentially resulting in a more profitable production system. But, feeding cows in the parlor or AMS has many challenges. On one side, feeding starchy, highly palatable ingredients in large amounts may upset rumen fermentation or alter feeding behavior after milking, whereas feeding high-fiber concentrates may compromise total energy intake and limit milking performance. Nevertheless, AMS (and some milking parlors, especially rotary ones) offer the possibility of feeding the cows to their estimated individual nutrient needs by combining different feeds on real time with the aim of maximizing profits rather than milk yield. This approach requires that not only the amount of feed offered to each cow but also the composition of the feed vary according to the different nutrient needs of the cows. This review discusses the opportunities and pitfalls of milking and feeding cows in an AMS and summarizes different feeding strategies to maximize profits by managing the nutrition of the cows individually.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2016-11694DOI Listing

Publication Analysis

Top Keywords

feeding cows
20
milking feeding
16
milking
13
feeding
11
cows
11
feeding strategies
8
herds equipped
8
milking parlors
8
ams
8
milking frequency
8

Similar Publications

Provision of supplemental concentrate in an automated milking system (AMS) is commonly used to encourage voluntary attendance, however, the motivation to voluntarily milk is highly variable between cows. The objectives of this study were to determine if dairy cow personality is associated with: 1) their short-term response to changes in factors believed to motivate voluntary AMS visits such as udder pressure and provision of supplemental feed (modulated by longer milking intervals or removal of AMS concentrate, respectively); and 2) their milking activity, production, and feeding behavior after returning to pre-treatment AMS milking interval and concentrate feed settings (i.e.

View Article and Find Full Text PDF

We aimed to evaluate the effects of prepartum supplementation of different I sources (Ascophyllum nodosum [ASCO] meal and ethylenediamine dihydroiodide [EDDI]) on colostrum yield of cows, and blood concentrations of glucose, BHB, and thyroid hormones and growth of dairy calves. Forty multiparous Holstein cows were blocked by lactation number and expected calving date and assigned to 1 of 4 treatments 28 d before parturition: (1) EDDI supplemented (11 mg/d) to a basal diet to meet the NRC (2001) I concentration of 0.5 mg of I/kg of DMI (control = CON [0 g/d of ASCO meal]; actual I concentration = 0.

View Article and Find Full Text PDF

Our aim was to determine the effects of P intake on P balance, serum parathyroid hormone (PTH) levels and bone resorption during the final 4 weeks prepartum and the first 8 weeks of lactation. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged according to a 2 × 2 factorial design. The experimental diets contained 3.

View Article and Find Full Text PDF

Forty-eight multiparous Holstein cows were used in a randomized complete block design and assigned to one of 4 treatments in a 2x2 factorial arrangement of treatments to determine the effects of supplemental palmitic acid (C16:0) and chromium (Cr) on production responses of early-lactation cows. During the fresh period (FR; 1-24 d in milk), cows were fed one of 4 treatments: (1) a diet containing no supplemental C16:0 or Cr (CON); (2) diet supplemented with an 85% C16:0-enriched supplement (PA); (3) diet supplemented with Cr-propionate (CR); and (4) diet supplemented with a C16:0-enriched supplement and Cr-propionate (PACR). The C16:0-enriched supplement was added at 1.

View Article and Find Full Text PDF

The improved growth performance of calves at weaning results from an effective pre-weaning feeding strategy. The type and pasteurization process of liquid feed are among the most variable feeding practices affecting calves' growth and health. In previous studies that compared waste milk (WM) vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!