Dual-ligand αβ and αβ integrin targeting enhances gene delivery and selectivity to cancer cells.

J Control Release

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

Published: April 2017

Nanoparticles functionalized with cancer-targeting ligands have shown promise but are still limited by off-tumor binding to healthy tissues that express low levels of the molecular target. Targeting two cancer biomarkers using dual-targeted heteromultivalent nanoparticles presents a possible solution to this challenge by requiring overexpression of two separate ligands for localization. In order to guide experimental design, a kinetic model was built to explore how the affinity and valency of dual-ligand liposomes affect the binding and selectivity of delivery to cells with various receptor expression. αβ and αβ integrin expression levels were quantified on 20 different cell lines to identify appropriate model cells for in vitro investigation. Dual-targeting heteromultivalent liposomes covered with polyethylene glycol (PEG) were synthesized using the PR_b peptide that binds to the αβ integrin and the AG86 peptide that binds to the αβ integrin. PEGylated liposomes with varying ratios of the targeting peptides were delivered to cells with different integrin concentrations. Nanoparticle binding and internalization as well as integrin internalization as a function of time were evaluated to understand the effect of valency and avidity on delivery. Results showed that of all formulations and cells tested, dual-ligand liposomes with equal ligand valencies achieved enhanced binding and selectivity for cancer cells expressing equal and high levels of receptor expression. These trends were consistent between theoretical and experimental results. The optimized liposomes were further used to achieve efficient and selective transfection in dual-receptor expressing cancer cells. With a quantitative understanding of dual-ligand liposome binding, the insights gained from this study can inform rational design of modular heteromultivalent nanoparticles for enhanced specificity to target tissue for the creation of more effective cancer treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2017.02.017DOI Listing

Publication Analysis

Top Keywords

αβ integrin
16
cancer cells
12
αβ αβ
8
selectivity cancer
8
heteromultivalent nanoparticles
8
dual-ligand liposomes
8
binding selectivity
8
receptor expression
8
peptide binds
8
binds αβ
8

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium TB, is the most significant infectious cause of mortality across the globe. While TB disease can prey on immunocompetent individuals, it is more likely to occur in immunocompromised individuals. Immune-mediated inflammatory diseases (IMIDs) are a group of diseases (rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, psoriasis, hidradenitis suppurative, autoimmune blistering diseases, and others) where there may be a need for systemic immunosuppression to control the disease manifestations, treat symptoms and improve long term outcomes.

View Article and Find Full Text PDF

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!