Antitumor therapy in the elderly is particularly challenging due to multiple, often chronic diseases, poly-therapy, and age-related physiological changes that affect drug efficacy and safety. Furthermore, tumors may become more aggressive and drug-resistant with advanced age, leading to poor patient prognosis. In this study, we evaluated in mice bearing medulloblastoma xenografts the effect of age on tumor progression and tumor therapy. We focused on therapeutic efficacy of two treatment modalities alone radiofrequency ablation therapy (RFA), PEGylated liposomal doxorubicin (PLD) equivalent to Doxil, and their combination. We demonstrated that tumor growth rate was higher and survival was lower in old versus young mice (p<0.05). Likewise, tumors in old mice were less susceptible to either PLD or RFA monotherapy. However, combined therapy of PLD and RFA succeeded to eliminate the age-related differences in anti-cancer treatment efficacy (p>0.05) by the two monotherapies. The results on PLD therapy are supported by preferable PEGylated nano-liposomes accumulation in tumors of young mice compared to old mice, as determined by near-infrared imaging with indocyanine green (ICG)-labeled PEGylated nano-liposomes. Taken together, our findings suggest that age effects on tumor progression and tumor monotherapy outcome may potentially be related to changes in tumor microenvironment, and that these changes can be overcome by RFA as this technique abolishes these differences and significantly improves success of PLD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2017.02.018DOI Listing

Publication Analysis

Top Keywords

young mice
12
therapeutic efficacy
8
pegylated liposomal
8
liposomal doxorubicin
8
radiofrequency ablation
8
tumor progression
8
progression tumor
8
pegylated nano-liposomes
8
tumor
6
therapy
5

Similar Publications

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

Background/objectives: Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC.

View Article and Find Full Text PDF

Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential.

View Article and Find Full Text PDF

Collagen I is the most abundant type of intramuscular collagen. Lysyl oxidase promotes collagen cross-link formation, which helps stabilize the extracellular matrix. Furthermore, matrix metalloproteinases, responsible for collagen degradation, maintain typical muscle structure and function through remodeling.

View Article and Find Full Text PDF

To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!