Background: The importance of hemoproteins for life lies largely in their iron-mediated chemical properties. In the human body, there are about 4 g of iron, a precious resource preserved by sophisticated recycling mechanisms. Iron is also important for pathogen growth, so it is not surprising that immune cells developed mechanisms to reduce iron availability in cases of inflammation. In healthy conditions, macrophages degrade hemoproteins and export iron, while if inflammation develops, they retain cytoplasmic iron to reduce extracellular iron concentrations. Iron-rich macrophages possess a stronger inflammatory ability, which explains the chronic inflammatory response observed in states of iron overload. Inflammatory bowel syndromes are often characterized by intestinal blood loss and consequent anemia, but iron-supplementation therapies may exacerbate the inflammatory response. In chronically transfused patients iron overload is frequently observed; the iron can become toxic and in excess, even fatal if not treated with iron-chelating drugs.

Conclusion: In the present review, we discuss the importance of iron homeostasis in states of health and inflammation, focusing on iron and iron-chelation treatment for IBD patients. Oral administration of natural ironchelating chemicals may be an effective adjuvant therapy for IBD patients, acting on numerous aspects of chronic inflammatory syndromes.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612823666170215143541DOI Listing

Publication Analysis

Top Keywords

iron
12
immune cells
8
inflammatory ability
8
adjuvant therapy
8
therapy ibd
8
chronic inflammatory
8
inflammatory response
8
iron overload
8
ibd patients
8
inflammatory
6

Similar Publications

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Background/objectives: Lactoferrin (Lf), a multifunctional iron-binding protein, has considerable potential for use as an active ingredient in food supplements due to its numerous positive effects on health. As Lf is prone to degradation, we aimed to develop a formulation that would ensure sufficient stability of Lf in the gastrointestinal tract and during product storage.

Methods: A simple, efficient, and well-established technology that has potential for industrial production was used for the double-coating of neutral pellet cores with an Lf layer and a protective enteric coating.

View Article and Find Full Text PDF

WCS417 Strain Enhances Tomato ( L.) Plant Growth Under Alkaline Conditions.

Plants (Basel)

January 2025

Departamento de Agronomía, Edificio Celestino Mutis (C-4), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain.

Iron (Fe) deficiency is among the most important agronomical concerns under alkaline conditions. Bicarbonate is considered an important factor causing Fe deficiency in dicot plants, mainly on calcareous soils. Current production systems are based on the use of high-yielding varieties and the application of large quantities of agrochemicals, which can cause major environmental problems.

View Article and Find Full Text PDF

Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!